微納加工技術指尺度為亞毫米、微米和納米量級元件以及由這些元件構成的部件或系統(tǒng)的優(yōu)化設計、加工、組裝、系統(tǒng)集成與應用技術,涉及領域廣、多學科交叉融合,其主要的發(fā)展方向是微納器件與系統(tǒng)(MEMS和NEMS)。微納器件與系統(tǒng)是在集成電路制作上發(fā)展的系列技術,研制微型傳感器、微型執(zhí)行器等器件和系統(tǒng),具有微型化、批量化、成本低的鮮明特點,對現(xiàn)活、生產產生了巨大的促進作用,并催生了一批新興產業(yè)。廣東省科學院半導體研究所微納加工平臺,面向半導體光電子器件、功率電子器件、MEMS、生物芯片等前沿領域,致力于打造的公益性、開放性、支撐性樞紐中心。平臺擁有半導體制備工藝所需的整套儀器設備,建立了一條實...
微納制造可以應用在什么哪些領域?微納制造作為國家新興產業(yè)發(fā)展的重大關鍵技術之一,對國家裝備實力和國民經濟技術的發(fā)展起到重要作用。微納制造技術的進步,推動著三大前沿科技的發(fā)展:生物技術、信息技術、納米技術。由于微納制造技術產品有體積小、集成度高、重量輕、智能化程度高等諸多優(yōu)點,在信息科學、生物醫(yī)療、航空航天等領域廣的應用。微納加工技術是先進制造的重要組成部分,是衡量國家高質量的制造業(yè)水平的標志之一,具有多學科交叉性和制造要素極端性的特點,在推動科技進步、促進產業(yè)發(fā)展、拉動科技進步、保障**安全等方面都發(fā)揮著關鍵作用。微納加工技術的基本手段包括微納加工方法與材料科學方法兩種。很顯然,微納加工技術與...
激光微納加工相比納秒激光器、連續(xù)激光器,飛秒激光加工是“冷加工”,其加工過程中幾近不會有熱:傳導。飛秒激光加工優(yōu)勢在于:峰值能量高、加工精度高、對材料幾乎無熱損傷等,其具體加工方式包括:蝕刻、改性、切割、打孔、周雕刻以及集成電路光刻等。廣東省科學院半導體研究所微納加工平臺,面向半導體光電子器件、功率電子器件、MEMS、生物芯片等前沿領域,致力于打造高級的公益性、開放性、支撐性樞紐中心。平臺擁有半導體制備工藝所需的整套儀器設備,建立了一條實驗室研發(fā)線和一條中試線,加工尺寸覆蓋2-6英寸(部分8英寸),同時形成了一支與硬件有機結合的專業(yè)人才隊伍。平臺當前緊抓技術創(chuàng)新和公共服務,面向國內...
微納加工中蒸鍍的物理過程包括:沉積材料蒸發(fā)或升華為氣態(tài)粒子→氣態(tài)粒子快速從蒸發(fā)源向基片表面輸送→氣態(tài)粒子附著在基片表面形核、長大成固體薄膜→薄膜原子重構或產生化學鍵合。將襯底放入真空室內,以電阻、電子束、激光等方法加熱膜料,使膜料蒸發(fā)或升華,氣化為具有一定能量(~eV)的粒子(原子、分子或原子團)。氣態(tài)粒子以基本無碰撞的直線運動飛速傳送至襯底,到達襯底表面的粒子一部分被反射,另一部分吸附在襯底上并發(fā)生表面擴散,沉積原子之間產生二維碰撞,形成簇團,有的可能在表面短時停留后又蒸發(fā)。粒子簇團不斷地與擴散粒子相碰撞,或吸附單粒子,或放出單粒子。此過程反復進行,當聚集的粒子數(shù)超過某一臨界值時...
微納測試與表征技術是微納加工技術的基礎與前提,它包括在微納器件的設計、制造和系統(tǒng)集成過程中,對各種參量進行微米/納米檢測的技術。微米測量主要服務于精密制造和微加工技術,目標是獲得微米級測量精度,或表征微結構的幾何、機械及力學特性;納米測量則主要服務于材料工程和納米科學,特別是納米材料,目標是獲得材料的結構、地貌和成分的信息。在半導體領域人們所關心的與尺寸測量有關的參數(shù)主要包括:特征尺寸或線寬、重合度、薄膜的厚度和表面的糙度等等。未來,微納測試與表征技術正朝著從二維到三維、從表面到內部、從靜態(tài)到動態(tài)、從單參量到多參量耦合、從封裝前到封裝后的方向發(fā)展。探索新的測量原理、測試方法和表征技...
光刻是半導體制造中常用的技術之一,是現(xiàn)代光電子器件制造的基礎。然而,深紫外和極紫外光刻系統(tǒng)及其相應的光學掩模都是基于低速高成本的電子束光刻(EBL)或者聚焦離子束刻蝕(FIB)技術,導致其價格都相對昂貴。因此,無掩模的高速制備法是微納結構制備的優(yōu)先方法。在這些無掩模方法中,直接激光寫入(direct laser writing, DLW)是一種重要的、被廣采用的微處理技術,能夠提供比較低的價格和相對較高的吞吐量。但是,實際應用中存在兩個主要挑戰(zhàn):一是與FIB和EBL相比,分辨率還不夠高。微納加工涉及領域廣、多學科交叉融合,其較主要的發(fā)展方向是微納器件與系統(tǒng)(MEMS)。開封微納加工工藝流程皮秒...
高精度的微細結構可以通過電子束直寫或激光直寫制作,這類光刻技術,像“寫字”一樣,通過控制聚焦電子束(光束)移動書寫圖案進行曝光,具有很高的曝光精度,但這兩種方法制作效率極低,尤其在大面積制作方面捉襟見肘,目前直寫光刻技術適用于小面積的微納結構制作。近年來,三維浮雕微納結構的需求越來越大,如閃耀光柵、菲涅爾透鏡、多臺階微光學元件等。據(jù)悉,蘋果公司新上市的手機產品中人臉識別模塊就采用了多臺階微光學元件,以及當下如火如荼的無人駕駛技術中激光雷達光學系統(tǒng)也用到了復雜的微光學元件。這類精密的微納結構光學元件需采用灰度光刻技術進行制作。直寫技術,通過在光束移動過程中進行相應的曝光能量調節(jié),可以...
MEMS(微機電系統(tǒng)),是指以微型化、系統(tǒng)化的理論為指導,通過半導體制造等微納加工手段,形成特征尺度為微納米量級的系統(tǒng)裝置。相對于先進的集成電路(IC)制造工藝(遵循摩爾定律),MEMS制造工藝不單純追求線寬而注重功能特色化,即利用微納結構或/和敏感材料實現(xiàn)多種傳感和執(zhí)行功能,工藝節(jié)點通常從500nm到110nm,襯底材料也不局限硅,還包括玻璃、聚合物、金屬等。由MEMS技術構建的產品往往具有體積小、重量輕、功耗低、成本低等優(yōu)點,已廣泛應用于汽車、手機、工業(yè)、醫(yī)療、**、航空航天等領域。廣東省科學院半導體研究所微納加工平臺,面向半導體光電子器件、功率電子器件、MEMS、生物芯片等前...
美國在微納加工技術的發(fā)展中發(fā)揮著主導作用。由于電子技術、計算機技術、航空航天技術和激光技術的需要,美國于1962年開發(fā)了金剛石刀具超精細切割機床,解決了激光核聚變反射鏡、天體望遠鏡等光學部件和計算機磁盤加工,奠定了微加工技術的基礎,隨后西歐和日本微加工技術發(fā)展迅速。微納加工技術是一種新興的綜合加工技術。它整合了現(xiàn)代機械、光學、電子、計算機、測量和材料等先進技術成果,使加工精度從20世紀60年代初的微米水平提高到目前的10m水平,在幾十年內提高了1~2個數(shù)量級,很大程度提高了產品的性能和可靠性。目前,微納加工技術已成為國家科技發(fā)展水平的重要標志。隨著各種新型功能陶瓷材料的成功...
在過去的二十年中,微機電系統(tǒng)、微系統(tǒng)、微機械及其子領域,微流體學片上實驗室,光學MEMS、RFMEMS、PowerMEMS、BioMEMS及其擴展到納米級(例如,用于納米機電系統(tǒng)的NEMS)已經重新使用,調整或擴展了微制造方法。平板顯示器和太陽能電池也正在使用類似的技術。各種設備的小型化在科學與工程的許多領域提出了挑戰(zhàn):物理、化學、材料科學、計算機科學、超精密工程、制造工藝和設備設計。它也引起了各種各樣的跨學科研究。微納加工的主要概念和原理是微光刻、摻雜、薄膜、蝕刻、粘接和拋光。濕法刻蝕較普遍、也是成本較低的刻蝕方法!孝感微納加工中心在微電子與光電子集成中,薄膜的形成方法主要有兩大...
微納測試與表征技術是微納加工技術的基礎與前提,它包括在微納器件的設計、制造和系統(tǒng)集成過程中,對各種參量進行微米/納米檢測的技術。微米測量主要服務于精密制造和微加工技術,目標是獲得微米級測量精度,或表征微結構的幾何、機械及力學特性;納米測量則主要服務于材料工程和納米科學,特別是納米材料,目標是獲得材料的結構、地貌和成分的信息。在半導體領域人們所關心的與尺寸測量有關的參數(shù)主要包括:特征尺寸或線寬、重合度、薄膜的厚度和表面的糙度等等。未來,微納測試與表征技術正朝著從二維到三維、從表面到內部、從靜態(tài)到動態(tài)、從單參量到多參量耦合、從封裝前到封裝后的方向發(fā)展。探索新的測量原理、測試方法和表征技...
淺談表面功能微納結構及其加工方法:目前可以實現(xiàn)表面微納結構的加工方法主要有以下幾種。(1)光刻技術,利用電子束或激光光束可以得到加工尺寸在幾十納米的微納結構,該方法優(yōu)勢在于精度高,得到的微納結構形狀可以得到很好的控制;(2)飛秒激光加工技術,由于飛秒激光具有不受衍射極限限制的特點,可以加工出遠小于光斑直徑的尺寸,研究人員通過試驗發(fā)現(xiàn),采用飛秒激光加工出10nm寬的納米線,在微納加工領域具有獨特優(yōu)勢。另外飛秒激光雙分子聚合技術可以實現(xiàn)納米尺寸結構的加工;(3)自組裝工藝,光刻與自組裝和刻蝕工藝結合,通過自組裝工藝,可以得到6nm左右的納米孔。(4)等離子刻蝕技術,等離子刻蝕技術是應用...
微納加工技術起源于微電子工業(yè),即使使用玻璃,塑料和許多其他基材,該設備通常還是在硅晶片上制造的。微加工、半導體加工、微電子制造、半導體制造、MEMS制造和集成電路技術是代替微加工的術語,但微加工是廣義的術語。傳統(tǒng)的加工技術(例如放電加工,火花腐蝕加工和激光鉆孔)已從室米尺寸范圍擴展到微米范圍,但博研小編認為它們并沒有共享微電子起源的微納加工的主要思想:復制和并行制造數(shù)百個或多個數(shù)百萬個相同的結構。這種平行性存在于各種印記,鑄造和模塑技術中,這些技術已成功應用于微區(qū)域。例如,DVD的注射成型涉及在光盤上制造亞微米尺寸的斑點。微納加工包括光刻、磁控濺射、電子束蒸鍍、濕法腐蝕、干法腐蝕、表...
光刻是微納加工技術中關鍵的工藝步驟,光刻的工藝水平決定產品的制程水平和性能水平。光刻的原理是在基底表面覆蓋一層具有高度光敏感性光刻膠,再用光線(一般是紫外光、深紫外光、極紫外光)透過光刻板照射在基底表面,被光線照射到的光刻膠會發(fā)生反應。此后用顯影液洗去被照射/未被照射的光刻膠, 就實現(xiàn)了圖形從光刻板到基底的轉移。光刻膠分為正性光刻和負性光刻兩種基本工藝,區(qū)別在于兩者使用的光刻膠的類型不同。負性光刻使用的光刻膠在曝光后會因為交聯(lián)而變得不可溶解,并會固化,不會被溶劑洗掉,從而該部分硅片不會在后續(xù)流程中被腐蝕掉,負性光刻光刻膠上的圖形與掩模版上圖形相反。微納制造技術研發(fā)和應用標志著人類可...
激光微納加工技術的實現(xiàn)方式:接觸式并行激光加工技術是指利用微球體顆粒進行激光圖案化。微球激光納米加工的機理。微球激光納米加工技術初源于對激光清潔領域的研究。研究發(fā)現(xiàn),基底上的微小球形顆粒在脈沖激光照射后,基底上球形顆粒的中心位置能夠產生亞波長尺寸的微/納孔。對于金屬顆粒而言,這是由于顆粒與基底之間的LSPR產生的強電磁場增強造成的;對于介質顆粒而言,由于其大半部分是透明的,可以將透明顆??闯蔀槲⑶蛲哥R,入射光在微球形透鏡的底面實現(xiàn)聚焦而引起的電磁場增強。這一過程可以實現(xiàn)入射光強度的60倍增強。通過對微球的直徑,折射率,環(huán)境以及入射的激光強度進行設計,可以實現(xiàn)在基底上燒蝕出亞波長尺寸...
微納加工技術的發(fā)展,將促進納米光電子器件向更深更廣的方向發(fā)展。微納加工的半導體納米結構在光電子領域帶來許多新的量子物理效應,如量子點的庫侖阻塞效應和光子輔助隧穿效應,光子晶體的光子帶隙效應等。對這些新的納米結構帶來的新現(xiàn)象的研究將為研制新原理基礎上的新器件打下基礎。廣東省科學院半導體研究所微納加工平臺,面向半導體光電子器件、功率電子器件、MEMS、生物芯片等前沿領域,致力于打造的公益性、開放性、支撐性樞紐中心。平臺擁有半導體制備工藝所需的整套儀器設備,建立了一條實驗室研發(fā)線和一條中試線,加工尺寸覆蓋2-6英寸(部分8英寸),同時形成了一支與硬件有機結合的專業(yè)人才隊伍。平臺當前緊...
微納測試與表征技術是微納加工技術的基礎與前提,它包括在微納器件的設計、制造和系統(tǒng)集成過程中,對各種參量進行微米/納米檢測的技術。微米測量主要服務于精密制造和微加工技術,目標是獲得微米級測量精度,或表征微結構的幾何、機械及力學特性;納米測量則主要服務于材料工程和納米科學,特別是納米材料,目標是獲得材料的結構、地貌和成分的信息。在半導體領域人們所關心的與尺寸測量有關的參數(shù)主要包括:特征尺寸或線寬、重合度、薄膜的厚度和表面的糙度等等。未來,微納測試與表征技術正朝著從二維到三維、從表面到內部、從靜態(tài)到動態(tài)、從單參量到多參量耦合、從封裝前到封裝后的方向發(fā)展。探索新的測量原理、測試方法和表征技...
濺射鍍膜有兩種方式:一種稱為離子束濺射,指真空狀態(tài)下用離子束轟擊靶表面,使濺射出的粒子在基體表面成膜,該工藝較為昂貴,主要用于制取特殊的薄膜;另一種稱為陰極濺射,主要利用低壓氣體放電現(xiàn)象,使處于等離子狀態(tài)下的離子轟擊靶面,濺射出的粒子沉積在基體上。它采用平行板電極結構,膜料物質做成的大面積靶為陰極,支持基體的基板為陽極,安裝于鐘罩式真空容器內。為減少污染,先將鐘罩內的壓強抽到小于10-3~10-4Pa,然后充入Ar氣,使壓強維持在1~10Pa。在兩極之間加數(shù)千伏的電壓進行濺射鍍膜。與蒸發(fā)鍍膜相比,濺射鍍膜時靶材(膜料)無相變,化合物成分穩(wěn)定,合金不易分餾,因此適合制備的膜材非常廣。...
電子束光刻技術是利用電子束在涂有電子抗蝕劑的晶片上直接描畫或投影復印圖形的技術.電子抗蝕劑是一種對電子敏感的高分子聚合物,經過電子束掃描過的電子抗蝕劑發(fā)生分子鏈重組,使曝光圖形部分的抗蝕劑發(fā)生化學性質改變。經過顯影和定影,獲得高分辨率的抗蝕劑曝光圖形。電子束光刻技術的主要工藝過程為涂膠、前烘、電子束曝光、顯影和堅膜?,F(xiàn)代的電子束光刻設備已經能夠制作小于10nm的精細線條結構。電子束光刻設備也是制作光學掩膜版的重要工具。影響曝光精度的內部工藝因素主要取決于電子束斑尺寸、掃描步長、電子束流劑量和電子散射引起的鄰近效應。應用于MEMS制作的襯底可以說是各種各樣的,如硅晶圓、玻璃晶圓、塑料、還其他的材...
微納加工:干法刻蝕VS濕法刻蝕!刻蝕工藝:用化學或物理方法有選擇性地從某一材料表面去除不需要那部分的過程,獲得目標圖形。在半導體制造中有兩種基本的刻蝕工藝:干法刻蝕和濕法刻蝕。干法刻蝕的刻蝕劑是等離子體,是利用等離子體和表面薄膜反應,形成揮發(fā)性物質,或直接轟擊薄膜表面使之被刻蝕的工藝。特點:能實現(xiàn)各向異性刻蝕,從而保證細小圖形轉移后的保真性。缺點:造價高。濕法刻蝕是通過化學刻蝕液和被刻蝕物質之間的化學反應將被刻蝕物質剝離下來的方法。大多數(shù)濕法刻蝕是不容易控制的各向同性刻蝕。特點:適應性強,表面均勻性好、對硅片損傷少,幾乎適用于所有的金屬、玻璃、塑料等材料。缺點:圖形刻蝕保真想過不理...
在過去的二十年中,微機電系統(tǒng)、微系統(tǒng)、微機械及其子領域,微流體學片上實驗室,光學MEMS、RFMEMS、PowerMEMS、BioMEMS及其擴展到納米級(例如,用于納米機電系統(tǒng)的NEMS)已經重新使用,調整或擴展了微制造方法。平板顯示器和太陽能電池也正在使用類似的技術。各種設備的小型化在科學與工程的許多領域提出了挑戰(zhàn):物理、化學、材料科學、計算機科學、超精密工程、制造工藝和設備設計。它也引起了各種各樣的跨學科研究。微納加工的主要概念和原理是微光刻、摻雜、薄膜、蝕刻、粘接和拋光。微納加工包括光刻、磁控濺射、電子束蒸鍍、濕法腐蝕、干法腐蝕、表面形貌測量等!運城鍍膜微納加工 ...
MEMS(微機電系統(tǒng)),是指以微型化、系統(tǒng)化的理論為指導,通過半導體制造等微納加工手段,形成特征尺度為微納米量級的系統(tǒng)裝置。相對于先進的集成電路(IC)制造工藝(遵循摩爾定律),MEMS制造工藝不單純追求線寬而注重功能特色化,即利用微納結構或/和敏感材料實現(xiàn)多種傳感和執(zhí)行功能,工藝節(jié)點通常從500nm到110nm,襯底材料也不局限硅,還包括玻璃、聚合物、金屬等。由MEMS技術構建的產品往往具有體積小、重量輕、功耗低、成本低等優(yōu)點,已廣泛應用于汽車、手機、工業(yè)、醫(yī)療、**、航空航天等領域。廣東省科學院半導體研究所微納加工平臺,面向半導體光電子器件、功率電子器件、MEMS、生物芯片等前...
基于掩模板圖形傳遞的光刻工藝可制作宏觀尺寸的微細結構,受光學衍射的極限,適用于微米以上尺度的微細結構制作,部分優(yōu)化的光刻工藝可能具有亞微米的加工能力。例如,接觸式光刻的分辨率可能到達0.5μm,采用深紫外曝光光源可能實現(xiàn)0.1μm。但利用這種光刻技術實現(xiàn)宏觀面積的納米/亞微米圖形結構的制作是可欲而不可求的。近年來,國內外很多學者相繼提出了超衍射極限光刻技術、周期減小光刻技術等,力求通過曝光光刻技術實現(xiàn)大面積的亞微米結構制作,但這類新型的光刻技術尚處于實驗室研究階段。微納結構器件是系統(tǒng)重要的組成部分,其制造的質量、效率和成本直接影響著行業(yè)的發(fā)展。清遠微納加工技術 光刻是半導體制造中常用...
微納加工大致可以分為“自上而下”和“自下而上”兩類。“自上而下”是從宏觀對象出發(fā),以光刻工藝為基礎,對材料或原料進行加工,小結果尺寸和精度通常由光刻或刻蝕環(huán)節(jié)的分辨力決定。“自下而上”技術則是從微觀世界出發(fā),通過控制原子、分子和其他納米對象的相互作用力將各種單元構建在一起,形成微納結構與器件?;诠饪坦に嚨奈⒓{加工技術主要包含以下過程:掩模(mask)制備、圖形形成及轉移(涂膠、曝光、顯影)、薄膜沉積、刻蝕、外延生長、氧化和摻雜等。在基片表面涂覆一層某種光敏介質的薄膜(抗蝕膠),曝光系統(tǒng)把掩模板的圖形投射在(抗蝕膠)薄膜上,光(光子)的曝光過程是通過光化學作用使抗蝕膠發(fā)生光化學作用...
微納測試與表征技術是微納加工技術的基礎與前提,它包括在微納器件的設計、制造和系統(tǒng)集成過程中,對各種參量進行微米/納米檢測的技術。微米測量主要服務于精密制造和微加工技術,目標是獲得微米級測量精度,或表征微結構的幾何、機械及力學特性;納米測量則主要服務于材料工程和納米科學,特別是納米材料,目標是獲得材料的結構、地貌和成分的信息。在半導體領域人們所關心的與尺寸測量有關的參數(shù)主要包括:特征尺寸或線寬、重合度、薄膜的厚度和表面的糙度等等。未來,微納測試與表征技術正朝著從二維到三維、從表面到內部、從靜態(tài)到動態(tài)、從單參量到多參量耦合、從封裝前到封裝后的方向發(fā)展。探索新的測量原理、測試方法和表征技...
微納加工技術具有高精度、科技含量高、產品附加值高等特點,能突顯一個國家工業(yè)發(fā)展水平,在推動科技進步、促進產業(yè)發(fā)展、提升生活品質等方面都發(fā)揮著重要作用。廣東省科學院半導體研究所微納加工平臺,是國內少數(shù)擁有完整半導體工藝鏈的研究平臺之一,可進行鍍膜、光刻、刻蝕等工藝,加工尺寸覆蓋2-6英寸。微納加工平臺將面向國內外科研機構和企業(yè)提供全方面的開放服務,對半導體材料與器件的深入研發(fā)給予全方面支持,能夠為廣大科研單位和企業(yè)提供高質量檔次服務。微納加工平臺包括光刻、磁控濺射、電子束蒸鍍、濕法腐蝕、干法腐蝕、表面形貌測量!濮陽石墨烯微納加工 高精度的微細結構可以通過電子束直寫或激光直...
MEMS(微機電系統(tǒng)),是指以微型化、系統(tǒng)化的理論為指導,通過半導體制造等微納加工手段,形成特征尺度為微納米量級的系統(tǒng)裝置。相對于先進的集成電路(IC)制造工藝(遵循摩爾定律),MEMS制造工藝不單純追求線寬而注重功能特色化,即利用微納結構或/和敏感材料實現(xiàn)多種傳感和執(zhí)行功能,工藝節(jié)點通常從500nm到110nm,襯底材料也不局限硅,還包括玻璃、聚合物、金屬等。由MEMS技術構建的產品往往具有體積小、重量輕、功耗低、成本低等優(yōu)點,已廣泛應用于汽車、手機、工業(yè)、醫(yī)療、**、航空航天等領域。廣東省科學院半導體研究所微納加工平臺,面向半導體光電子器件、功率電子器件、MEMS、生物芯片等前...
微納加工是指制造特征尺寸以納米為單位的結構,尤其是側面小于20納米的結構。目前的技術大多只允許在二維意義上進行微納加工。納加工通常用于制造計算機芯片,傳統(tǒng)的光刻技術是計算機行業(yè)的支柱,可用于創(chuàng)建尺寸小于22m的特征,雖然這是非常昂貴的,而目且目前還不被認為是經濟有效的。廣東省科學院半導體研究所微納加工平臺,面向半導體光電子器件、功率電子器件、MEMS、生物芯片等前沿領域,致力于打造高級的公益性、開放性、支撐性樞紐中心。平臺擁有半導體制備工藝所需的整套儀器設備,建立了一條實驗室研發(fā)線和一條中試線,加工尺寸覆蓋2-6英寸(部分8英寸),同時形成了一支與硬件有機結合的專業(yè)人才隊伍。平...
微納加工技術是先進制造的重要組成部分,是衡量國家制造業(yè)水平的標志之一,具有多學科交叉性和制造要素極端性的特點,在推動科技進步、促進產業(yè)發(fā)展、拉動科技進步、保障**安全等方面都發(fā)揮著關鍵作用。微納加工技術的基本手段包括微納加工方法與材料科學方法兩種。很顯然,微納加工技術與微電子工藝技術有密切關系。廣東省科學院半導體研究所微納加工平臺面向半導體光電子器件、功率電子器件、MEMS、生物芯片等前沿領域提供技術咨詢、器件設計、版圖設計、光刻、刻蝕、鍍膜等技術服務。微機電系統(tǒng)、微光電系統(tǒng)、生物微機電系統(tǒng)等是微納米技術的重要應用領域。新余電子微納加工2012年北京工業(yè)大學Duan等使用課題組自行研...
2012年北京工業(yè)大學Duan等使用課題組自行研制的皮秒激光器對金屬鉬、鈦和不銹鋼進行了精密制孔研究,并利用旋切制孔方式對厚度為0.3mm的金屬鉬實現(xiàn)了孔徑?小于200μm的微孔加工,利用螺旋制孔方式在厚度為1mm不銹鋼上實現(xiàn)了孔徑為200μm的制孔效果。實驗指出大口徑微孔加工應采用旋切制孔方式,而加工較小口徑時則更宜選用螺旋制孔方式。皮秒激光精密微孔加工過程中,對于厚度較小的材料(d<1μm),由于激光與材料作用的時間較短,以采用高峰值功率、窄脈寬的激光為宜,而對于厚度在百微米甚至超過1mm的金屬材料的微孔加工,除了要考慮激光峰值功率以及脈沖寬度外,選擇合適的制孔方式是必要的。此外,根據(jù)材料...