QRDecomposition QR 分解RandomMatrix 構(gòu)造隨機(jī)矩陣RandomVector 構(gòu)造隨機(jī)向量Rank 計(jì)算矩陣的秩Row 返回矩陣的一個(gè)行向量序列Column 返回矩陣的一個(gè)列向量序列RowOperation 對矩陣作初等行變換ColumnOperation 對矩陣作出等列變換RowSpace 返回矩陣行空間的一組基ColumnSpace 返回矩陣列空間的一組基ScalarMatrix 構(gòu)造一個(gè)單位矩陣的數(shù)量倍數(shù)ScalarVector 構(gòu)造一個(gè)單位向量的數(shù)量倍數(shù)ScalarMultiply 矩陣與數(shù)的乘積MatrixScalarMultiply 計(jì)算矩陣與數(shù)的乘積VectorScalarMultiply 計(jì)算向量與數(shù)的乘積通過自動化測試、智能推薦等功能,軟件能夠輔助用戶更加高效地完成計(jì)算任務(wù)。崇明區(qū)質(zhì)量科學(xué)計(jì)算軟件服務(wù)電話
exp - 指數(shù)函數(shù)sum - 確定求和不確定求和sqrt - 計(jì)算平方根算術(shù)運(yùn)算符+, -, *, /, ^add, mul - 值序列的加法/乘法2.2 三角函數(shù)arcsin, arcsinh, . - 反三角函數(shù)/反雙曲函數(shù)sin, sinh, . - 三角函數(shù)/雙曲函數(shù)2.3 LOGARITHMS 函數(shù)dilog - Dilogarithm 函數(shù)ln, log, log10 - 自然對數(shù)/一般對數(shù),常用對數(shù)2.4 類型轉(zhuǎn)換convert/`+`,convert/`*` - 轉(zhuǎn)換為求和/乘積convert/hypergeom - 將求和轉(zhuǎn)換為超越函數(shù)convert/degrees - 將弧度轉(zhuǎn)換為度convert/expsincos - 將trig 函數(shù)轉(zhuǎn)換為exp, sin, cosconvert/Ei - 轉(zhuǎn)換為指數(shù)積分徐匯區(qū)智能科學(xué)計(jì)算軟件圖片人工智能與機(jī)器學(xué)習(xí)集成:AI技術(shù)的集成使得科學(xué)計(jì)算軟件具備更強(qiáng)的自主決策能力。
Beta - Beta函數(shù)EllipticModulus - 模數(shù)函數(shù)k(q)GAMMA, lnGAMMA - 完全和不完全Gamma函數(shù)GaussAGM - Gauss 算術(shù)的幾何平均數(shù)JacobiAM, ., - Jacobi 振幅函數(shù)和橢圓函數(shù)JacobiTheta1, JacobiTheta4 - Jacobi theta函數(shù)JacobiZeta - Jacobi 的Zeta函數(shù)KelvinBer, KelvinBei - Kelvin函數(shù)KummerM, - Kummer M函數(shù)和U函數(shù)LambertW - LambertW函數(shù)LerchPhi - 一般的Lerch Phi函數(shù)LommelS1, LommelS2 - Lommel函數(shù)MeijerG - 一個(gè)修正的Meijer G函數(shù)Psi - Digamma 和Polygamma函數(shù)StruveH, StruveL - Struve函數(shù)WeierstrassP - Weierstrass P函數(shù)及其導(dǎo)數(shù)
SchurForm 將方陣約化為 Schur 型SingularValues 計(jì)算矩陣的奇異值SmithForm 將矩陣約化為 Smith 正規(guī)型StronglyConnectedBlocks 計(jì)算方陣的強(qiáng)連通塊SubMatrix 構(gòu)造矩陣的子矩陣SubVector 構(gòu)造向量的子向量SylvesterMatrix 構(gòu)造兩個(gè)多項(xiàng)式的 Sylvester 矩陣ToeplitzMatrix 構(gòu)造 Toeplitz 矩陣Trace 計(jì)算方陣的跡Transpose轉(zhuǎn)置矩陣HermitianTranspose 共軛轉(zhuǎn)置矩陣TridiagonalForm 將方陣約化為三對角型UnitVector 構(gòu)造單位向量VandermondeMatrix 構(gòu)造一個(gè) Vandermonde 矩陣VectorAngle 計(jì)算兩個(gè)向量的夾角大數(shù)據(jù)技術(shù)的整合使得軟件能夠處理更加復(fù)雜、龐大的數(shù)據(jù)集,提高計(jì)算的準(zhǔn)確性和效率。
Maple:用于符號計(jì)算和數(shù)值計(jì)算,適合數(shù)學(xué)建模和工程應(yīng)用。Mathematica:強(qiáng)大的計(jì)算軟件,適用于符號計(jì)算、數(shù)值計(jì)算和可視化。Julia:一種高性能的編程語言,專為科學(xué)計(jì)算而設(shè)計(jì),具有良好的性能和易用性。COMSOL Multiphysics:用于多物理場仿真,適合工程和科學(xué)研究。ANSYS:用于工程仿真和有限元分析,廣泛應(yīng)用于機(jī)械、土木、航空等領(lǐng)域。SciLab:開源的科學(xué)計(jì)算軟件,功能與MATLAB相似,適合數(shù)值計(jì)算和可視化。這些軟件各有特點(diǎn),選擇合適的工具通常取決于具體的應(yīng)用需求和個(gè)人的使用習(xí)慣。SciLab:開源的科學(xué)計(jì)算軟件,功能與MATLAB相似,適合數(shù)值計(jì)算和可視化。嘉定區(qū)定制科學(xué)計(jì)算軟件設(shè)計(jì)
Julia:一種高性能的編程語言,專為科學(xué)計(jì)算而設(shè)計(jì),具有良好的性能和易用性。崇明區(qū)質(zhì)量科學(xué)計(jì)算軟件服務(wù)電話
三、科學(xué)計(jì)算軟件的發(fā)展趨勢隨著計(jì)算機(jī)技術(shù)的不斷發(fā)展,科學(xué)計(jì)算軟件也在不斷更新?lián)Q代。當(dāng)前,科學(xué)計(jì)算軟件的發(fā)展趨勢主要呈現(xiàn)以下幾個(gè)方面:云計(jì)算與大數(shù)據(jù)整合:云計(jì)算架構(gòu)的普及使得科學(xué)計(jì)算軟件能夠更加高效地利用計(jì)算資源,降低本地硬件的依賴。同時(shí),大數(shù)據(jù)技術(shù)的整合使得軟件能夠處理更加復(fù)雜、龐大的數(shù)據(jù)集,提高計(jì)算的準(zhǔn)確性和效率。人工智能與機(jī)器學(xué)習(xí)集成:AI技術(shù)的集成使得科學(xué)計(jì)算軟件具備更強(qiáng)的自主決策能力。例如,通過自動化測試、智能推薦等功能,軟件能夠輔助用戶更加高效地完成計(jì)算任務(wù)。崇明區(qū)質(zhì)量科學(xué)計(jì)算軟件服務(wù)電話
甘茨軟件科技(上海)有限公司在同行業(yè)領(lǐng)域中,一直處在一個(gè)不斷銳意進(jìn)取,不斷制造創(chuàng)新的市場高度,多年以來致力于發(fā)展富有創(chuàng)新價(jià)值理念的產(chǎn)品標(biāo)準(zhǔn),在上海市等地區(qū)的數(shù)碼、電腦中始終保持良好的商業(yè)口碑,成績讓我們喜悅,但不會讓我們止步,殘酷的市場磨煉了我們堅(jiān)強(qiáng)不屈的意志,和諧溫馨的工作環(huán)境,富有營養(yǎng)的公司土壤滋養(yǎng)著我們不斷開拓創(chuàng)新,勇于進(jìn)取的無限潛力,甘茨軟件供應(yīng)攜手大家一起走向共同輝煌的未來,回首過去,我們不會因?yàn)槿〉昧艘稽c(diǎn)點(diǎn)成績而沾沾自喜,相反的是面對競爭越來越激烈的市場氛圍,我們更要明確自己的不足,做好迎接新挑戰(zhàn)的準(zhǔn)備,要不畏困難,激流勇進(jìn),以一個(gè)更嶄新的精神面貌迎接大家,共同走向輝煌回來!
MatrixMatrixMultiply 計(jì)算兩個(gè)矩陣的乘積MatrixVectorMultiply 計(jì)算一個(gè)矩陣和一個(gè)列向量的乘積VectorMatrixMultiply 計(jì)算一個(gè)行向量和一個(gè)矩陣的乘積MatrixPower 矩陣的冪MinimalPolynomial 構(gòu)造矩陣的**小多項(xiàng)式Minor 計(jì)算矩陣的子式Multiply 矩陣相乘Norm 計(jì)算矩陣或向量的p-范數(shù)MatrixNorm 計(jì)算矩陣的p-范數(shù)VectorNorm 計(jì)算向量的p-范數(shù)Normalize 向量正規(guī)化NullSpace 計(jì)算矩陣的零度零空間OuterProductMatrix 兩個(gè)向量的外積Permanent...