目標(biāo)跟蹤時,多維度、多層級信息融合也十分重要。為了提高對運(yùn)動目標(biāo)表觀描述的準(zhǔn)確度與可信性,現(xiàn)有的檢測與跟蹤算法通常對時域、空域、頻域等不同特征信息進(jìn)行融合,綜合利用各種冗余、互補(bǔ)信息提升算法的精確性與魯棒性.然而,目前大多算法還只是對單一時間、單一空間的多尺度信息進(jìn)行融合,使用者可以考慮從時間、推理等不同維度,對特征、決策等不同層級的多源互補(bǔ)信息進(jìn)行融合,提升檢測與跟蹤的準(zhǔn)確性。成都慧視開發(fā)的Viztra-HE030圖像處理板采用了RK3588高性能芯片,工業(yè)級的處理能力能夠運(yùn)用到諸多行業(yè)。跟蹤算法能夠支持定制不?附近目標(biāo)跟蹤報(bào)價行情
通常,遮擋可以分為三種情況:目標(biāo)間遮擋、背景遮擋、自遮擋。對于目標(biāo)之間的相互遮擋,可以選擇根據(jù)目標(biāo)的位置和目標(biāo)特征的先驗(yàn)知識來處理這一問題。而對于場景結(jié)構(gòu)的導(dǎo)致的部分遮擋此方法則難以判斷,因?yàn)殡y以辨認(rèn)究竟是目標(biāo)形狀發(fā)生變化還是發(fā)生遮擋。所以,處理遮擋問題的通用方法是用線性或非線性動態(tài)建模方法對運(yùn)動目標(biāo)進(jìn)行,并在目標(biāo)發(fā)生遮擋時,預(yù)測目標(biāo)的可能位置,一直到目標(biāo)重新出現(xiàn)時再修正它的位置??梢杂每柭鼮V波器來實(shí)現(xiàn)估計(jì)目標(biāo)的位置,也可以用粒子濾波對目標(biāo)做狀態(tài)估計(jì)。海南工業(yè)目標(biāo)跟蹤慧視RK3588板卡可以用于大型公共停車場。
另外,經(jīng)典的跟蹤方法還有基于特征點(diǎn)的光流跟蹤,在目標(biāo)上提取一些特征點(diǎn),然后在下一幀計(jì)算這些特征點(diǎn)的光流匹配點(diǎn),統(tǒng)計(jì)得到目標(biāo)的位置。在跟蹤的過程中,需要不斷補(bǔ)充新的特征點(diǎn),刪除置信度不佳的特征點(diǎn),以此來適應(yīng)目標(biāo)在運(yùn)動中的形狀變化。本質(zhì)上可以認(rèn)為光流跟蹤屬于用特征點(diǎn)的來表征目標(biāo)模型的方法。在深度學(xué)習(xí)和相關(guān)濾波的跟蹤方法出現(xiàn)后,經(jīng)典的跟蹤方法都被舍棄,這主要是因?yàn)檫@些經(jīng)典方法無法處理和適應(yīng)復(fù)雜的跟蹤變化,它們的魯棒性和準(zhǔn)確度都被前沿的算法所超越,但是,了解它們對理解跟蹤過程是有必要的,有些方法在工程上仍然有十分重要的應(yīng)用,常常被當(dāng)作一種重要的輔助手段。
很多跟蹤方法都是對通用目標(biāo)的跟蹤,沒有目標(biāo)的類別先驗(yàn)。在實(shí)際應(yīng)用中,還有一個重要的跟蹤是特定物體的跟蹤,比如人臉跟蹤、手勢跟蹤和人體跟蹤等。特定物體的跟蹤與前面介紹的方法不同,它更多地依賴對物體訓(xùn)練特定的檢測器。人臉跟蹤由于它的明顯特征,它的跟蹤就主要由檢測來實(shí)現(xiàn),比如早期的Viola-Jones檢測框架和當(dāng)前利用深度學(xué)習(xí)的人臉檢測或人臉特征點(diǎn)檢測模型。手勢跟蹤在應(yīng)用主要集中在跟蹤特定的手型,比如跟蹤手掌或者拳頭。設(shè)定特定的手型可以方便地訓(xùn)練手掌或拳頭的檢測器。慧視RK3399圖像跟蹤板支持目標(biāo)跟蹤識別目標(biāo)(人、車)。
YOLO算法具有以下幾個明顯的優(yōu)勢:快速高效:YOLO算法采用單次前向傳播的方式進(jìn)行目標(biāo)檢測和跟蹤,相比傳統(tǒng)方法的多次掃描圖像,速度更快,適用于實(shí)時應(yīng)用。準(zhǔn)確性較高:通過引入先進(jìn)的卷積神經(jīng)網(wǎng)絡(luò)和相關(guān)技術(shù),YOLO算法在目標(biāo)定位和類別預(yù)測方面具有較高的準(zhǔn)確性。多尺度處理:YOLO算法通過特征金字塔網(wǎng)絡(luò)和多尺度預(yù)測技術(shù),可以處理不同大小的目標(biāo),并保持對小目標(biāo)的有效檢測。端到端訓(xùn)練:YOLO算法可以進(jìn)行端到端的訓(xùn)練,避免了多階段處理的復(fù)雜性,簡化了算法的實(shí)現(xiàn)和使用。RK2588搭載AI智能算法,實(shí)現(xiàn)目標(biāo)識別與跟蹤。海南工業(yè)目標(biāo)跟蹤
工程師以RK3588核心板為基礎(chǔ)進(jìn)行定制開發(fā),讓攝像頭更加智能高效,能夠輸出高清流的圖像視頻。附近目標(biāo)跟蹤報(bào)價行情
目標(biāo)跟蹤算法具有不同的分類標(biāo)準(zhǔn),可根據(jù)檢測圖像序列的性質(zhì)分為可見光圖像跟蹤和紅外圖像跟蹤;又可根據(jù)運(yùn)動場景對象分為靜止背景目標(biāo)跟蹤和運(yùn)動背景下的目標(biāo)跟蹤。由于基于區(qū)域的目標(biāo)跟蹤算法用的是目標(biāo)的全局信息,比如灰度、色彩、紋理等。因此當(dāng)目標(biāo)未被遮擋時,跟蹤精度非常高、跟蹤非常穩(wěn)定,對于跟蹤小目標(biāo)效果很好,可信度高。但是在灰度級的圖像上進(jìn)行匹配和全圖搜索,計(jì)算量較大,非常費(fèi)時間,所以在實(shí)際應(yīng)用中實(shí)用性不強(qiáng);其次,算法要求目標(biāo)不能有太大的遮擋及其形變,否則會導(dǎo)致匹配精度下降,造成運(yùn)動目標(biāo)的丟失。附近目標(biāo)跟蹤報(bào)價行情