二極管的伏安特性,外加電壓P->N,大于勢壘電壓,二極管導(dǎo)通;外加電壓N->P,大于反向擊穿電壓,二極管擊穿。二極管的相關(guān)應(yīng)用:1整流,整流,就是把交流電變?yōu)橹绷麟姷倪^程。利用具有單向?qū)щ娞匦缘钠骷?可以把方向和大小交變的電流變換為直流電。(1)半波整流電路;(2)全波整流電路。需要特別指出的是,二極管作為整流元件,要根據(jù)不同的整流方式和負(fù)載大小加以選擇。如選擇不當(dāng),則或者不能安全工作,甚至燒了管子;或者大材小用,造成浪費(fèi)。逆向擊穿時(shí)應(yīng)避免超過較大額定反向電壓,以免損壞器件。肇慶二極管
二極管的功能,二極管的主要功能是將交流電轉(zhuǎn)換為直流電,也可作為整流器、限流器、穩(wěn)壓器等電路中的關(guān)鍵元件。另外,二極管還可用于振蕩電路、開關(guān)電路、放大電路等電路中,起到重要的作用。二極管的作用,整流:二極管可以將交流電轉(zhuǎn)換為直流電,實(shí)現(xiàn)整流功能。當(dāng)正向電壓施加在二極管上時(shí),電流可以自由通過,而當(dāng)反向電壓施加在二極管上時(shí),二極管則處于截止?fàn)顟B(tài),阻止電流通過。原理就是兩個(gè)管子分別導(dǎo)通,首先,是正半周期D2,D3工作,然后,是負(fù)半周期D1,D4工作。佛山有機(jī)發(fā)光二極管制造商氮化鎵二極管使用于高溫、高頻、高電壓和高功率的應(yīng)用場合,具有較高的工作效率。
晶體二極管分類如下:鍵型二極管,鍵型二極管是在鍺或硅的單晶片上熔接或銀的細(xì)絲而形成的。其特性介于點(diǎn)接觸型二極管和合金型二極管之間。與點(diǎn)接觸型相比較,雖然鍵型二極管的PN結(jié)電容量稍有增加,但正向特性特別優(yōu)良。多作開關(guān)用,有時(shí)也被應(yīng)用于檢波和電源整流(不大于50mA)。在鍵型二極管中,熔接金絲的二極管有時(shí)被稱金鍵型,熔接銀絲的二極管有時(shí)被稱為銀鍵型。4、擴(kuò)散型二極管,在高溫的P型雜質(zhì)氣體中,加熱N型鍺或硅的單晶片,使單晶片表面的一部變成P型,以此法PN結(jié)。因PN結(jié)正向電壓降小,適用于大電流整流。較近,使用大電流整流器的主流已由硅合金型轉(zhuǎn)移到硅擴(kuò)散型。
工作原理:晶體二極管為一個(gè)由p型半導(dǎo)體和n型半導(dǎo)體形成的pn結(jié),在其界面處兩側(cè)形成空間電荷層,并建有自建電場。當(dāng)不存在外加電壓時(shí),由于pn結(jié)兩邊載流子濃度差引起的擴(kuò)散電流和自建電場引起的漂移電流相等而處于電平衡狀態(tài)。當(dāng)外界有正向電壓偏置時(shí),外界電場和自建電場的互相抑消作用使載流子的擴(kuò)散電流增加引起了正向電流。當(dāng)外界有反向電壓偏置時(shí),外界電場和自建電場進(jìn)一步加強(qiáng),形成在一定反向電壓范圍內(nèi)與反向偏置電壓值無關(guān)的反向飽和電流I0。當(dāng)外加的反向電壓高到一定程度時(shí),pn結(jié)空間電荷層中的電場強(qiáng)度達(dá)到臨界值產(chǎn)生載流子的倍增過程,產(chǎn)生大量電子空穴對(duì),產(chǎn)生了數(shù)值很大的反向擊穿電流,稱為二極管的擊穿現(xiàn)象。pn結(jié)的反向擊穿有齊納擊穿和雪崩擊穿之分。二極管的工作原理基于PN結(jié)的特性,當(dāng)正向偏置時(shí)導(dǎo)通,反向偏置時(shí)截止。
二極管特性及參數(shù):1、二極管伏安特性,導(dǎo)通后分電壓值約為 0.7 V(硅管)或0.3V(鍺管)(LED 約為 1-2 V,電流 5-20 mA)。反向不導(dǎo)通,但如果達(dá)到反向擊穿電壓,那將導(dǎo)通(超過反向較大電壓可能燒壞)。正向電壓很小時(shí)不導(dǎo)通(0.5 V 以上時(shí)才導(dǎo)通)。2、主要參數(shù):較大整流電流 I_FIF: 表示長期運(yùn)行允許的較大正向平均電流,超出可能因結(jié)溫過高燒壞。較高反向工作電壓 U_RUR:允許施加的較大反向電壓,超出可能擊穿。(U_RUR 通常為擊穿電壓的一半)。反向電流 I_RIR: 未擊穿時(shí)的反向電流,越小導(dǎo)電性越好。較高工作頻率 f_MfM: 上線截止頻率。因結(jié)電容作用,超出可能不能很好體現(xiàn)的單向?qū)щ娦浴囟葘?duì)二極管的特性有影響,需考慮溫漂移。佛山阻尼二極管供應(yīng)
二極管還可用作信號(hào)調(diào)節(jié)、保護(hù)電路中的開關(guān)元件。肇慶二極管
1873年,弗雷德里克·格思里( Frederick Guthrie )發(fā)現(xiàn)了熱離子二極管的基本操作原理 [6] 。他發(fā)現(xiàn)了當(dāng)白熱化的接地金屬接近帶正電的驗(yàn)電器時(shí),驗(yàn)電器的電會(huì)被引走;然而帶負(fù)電的驗(yàn)電器則不會(huì)發(fā)生類似情況。這表明了電流只能向一個(gè)方向流動(dòng)。1880年2月13日,托馬斯·愛迪生也發(fā)現(xiàn)了這一規(guī)律。當(dāng)時(shí),愛迪生正在研究為什么他的碳絲燈泡的燈絲幾乎總是在正極端燒斷。他有一個(gè)密封了金屬板的特殊玻璃外殼燈泡。利用這個(gè)裝置,他證實(shí),發(fā)光的燈絲會(huì)有一種無形的電流穿過真空與金屬板連接,但只有當(dāng)板被連接到正電源時(shí)才會(huì)發(fā)生。愛迪生隨即發(fā)明了一種電路,他的特殊燈泡有效地取代了直流電壓表中的電阻。肇慶二極管