SpeedDP作為一個(gè)低門檻的深度學(xué)習(xí)算法開發(fā)平臺(tái),能夠?yàn)槭褂谜咛峁臄?shù)據(jù)標(biāo)注、模型訓(xùn)練、測(cè)試驗(yàn)證到RockChip嵌入式硬件平臺(tái)模型部署的可視化AI開發(fā)功能。目前,SpeedDP提供網(wǎng)頁(yè)端和移動(dòng)端兩種選擇,網(wǎng)頁(yè)端可以在局域網(wǎng)使用,而移動(dòng)端能夠快速直觀的驗(yàn)證所開發(fā)的不同算法在移動(dòng)端部署時(shí)的實(shí)際效果,使用起來(lái)更加便捷。SpeedDP也是一個(gè)運(yùn)行在移動(dòng)設(shè)備上的視覺(jué)算法測(cè)試工具集,支持的主要任務(wù)功能包括圖像分類、目標(biāo)檢測(cè)、多目標(biāo)跟蹤,主要的部署平臺(tái)是RockChip嵌入式硬件平臺(tái)包括RK3399pro、RK3588等。軟件可運(yùn)行于Windows或Linux操作系統(tǒng),來(lái)幫助使用者完成自動(dòng)標(biāo)注、AI算法(目前支持目標(biāo)檢測(cè))開發(fā)(項(xiàng)目配置、訓(xùn)練、評(píng)估、測(cè)試)、模型部署等相關(guān)功能,在充分保證數(shù)據(jù)安全的基礎(chǔ)上,能夠有效減少人力、物力消耗,節(jié)省項(xiàng)目開發(fā)時(shí)間。通過(guò)海量的數(shù)據(jù)模型訓(xùn)練,SpeedDP能夠更加聰明。江西智慧園區(qū)AI智能供應(yīng)商
圖像視頻識(shí)別技術(shù)深入生活場(chǎng)景的背后,數(shù)據(jù)發(fā)揮著愈加重要的作用。我們都知道人工智能是通過(guò)大批量基于特定標(biāo)注規(guī)則后學(xué)習(xí)的方法論。"數(shù)據(jù)標(biāo)注"通過(guò)人工智能訓(xùn)練師將像素、語(yǔ)音信號(hào)、文本內(nèi)容等轉(zhuǎn)換為機(jī)器能理解,能看懂的數(shù)據(jù)內(nèi)容,這樣機(jī)器才能習(xí)得識(shí)別處理。因此,數(shù)據(jù)標(biāo)注工作自然也就成為將原始數(shù)據(jù)變成算法可用AI數(shù)據(jù)的關(guān)鍵步驟,是關(guān)乎整個(gè)AI產(chǎn)業(yè)的基礎(chǔ),更是機(jī)器感知現(xiàn)實(shí)世界的源點(diǎn)。可以說(shuō)得數(shù)據(jù)者,才得人工智能。高質(zhì)量的AI數(shù)據(jù)對(duì)于圖像視頻識(shí)別技術(shù)的落地應(yīng)用的價(jià)值毋庸置疑,高質(zhì)量的AI數(shù)據(jù)將很大限度地提升圖像識(shí)別的效率??梢哉f(shuō),數(shù)據(jù)之于AI產(chǎn)業(yè)的意義,就在于可以很大程度上提升AI在行業(yè)落地的效率與穩(wěn)定,進(jìn)而推動(dòng)新基建的落地,可見其意義之深遠(yuǎn)。湖北研發(fā)AI智能在機(jī)器學(xué)習(xí)中,模型部署是將機(jī)器學(xué)習(xí)模型集成到現(xiàn)有生產(chǎn)環(huán)境中的過(guò)程。

近年來(lái),人們?cè)絹?lái)越認(rèn)識(shí)到深入理解機(jī)器學(xué)習(xí)數(shù)據(jù)的必要性。不過(guò),鑒于檢測(cè)大型數(shù)據(jù)集往往需要耗費(fèi)大量人力物力,它在計(jì)算機(jī)視覺(jué)領(lǐng)域的廣泛應(yīng)用,尚有待進(jìn)一步開發(fā)。通常,在物體檢測(cè)中,通過(guò)定義邊界框,來(lái)定位圖像中的物體,不僅可以識(shí)別物體,還能夠了解物體的上下文、大小、以及與場(chǎng)景中其他元素的關(guān)系。同時(shí),針對(duì)類的分布、物體大小的多樣性、以及類出現(xiàn)的常見環(huán)境進(jìn)行了解,也有助于在評(píng)估和調(diào)試中發(fā)現(xiàn)訓(xùn)練模型中的錯(cuò)誤模式,從而更有針對(duì)性地選擇額外的訓(xùn)練數(shù)據(jù)。
目標(biāo)檢測(cè)(Object Detection)的任務(wù)是找出圖像中所有感興趣的目標(biāo)(物體),確定它們的類別和位置,是計(jì)算機(jī)視覺(jué)領(lǐng)域的主要問(wèn)題之一。由于各類物體有不同的外觀、形狀和姿態(tài),加上成像時(shí)光照、遮擋等因素的干擾,目標(biāo)檢測(cè)一直是計(jì)算機(jī)視覺(jué)領(lǐng)域相當(dāng)有有挑戰(zhàn)性的問(wèn)題。隨著深度學(xué)習(xí)的不斷發(fā)展,目標(biāo)檢測(cè)的應(yīng)用愈加廣,現(xiàn)已被應(yīng)用于農(nóng)業(yè)、交通和醫(yī)學(xué)等眾多領(lǐng)域。與基于特征的傳統(tǒng)手工方法相比,基于深度學(xué)習(xí)的目標(biāo)檢測(cè)方法可以學(xué)習(xí)低級(jí)和高級(jí)圖像特征,有更好的檢測(cè)精度和泛化能力SpeedDP能夠替代傳統(tǒng)的人工標(biāo)注師。

隨著技術(shù)的不斷迭代發(fā)展,人工智能應(yīng)用已潛移默化的深入到人們的日常生活中,智能圖片搜索、人臉識(shí)別、指紋識(shí)別、掃碼支付、視覺(jué)工業(yè)機(jī)器人、輔助駕駛等圖像視頻識(shí)別產(chǎn)品正在深刻改變著傳統(tǒng)行業(yè)。而這些功能實(shí)現(xiàn)的背后,都要依賴于人工智能數(shù)據(jù)的標(biāo)注。但是如果遇到數(shù)據(jù)量龐大的標(biāo)注需求,傳統(tǒng)的人工標(biāo)注就顯得費(fèi)時(shí)費(fèi)力,會(huì)影響整個(gè)項(xiàng)目的進(jìn)度。慧視SpeedDP是針對(duì)AI零基礎(chǔ)用戶的低門檻AI開發(fā)平臺(tái),提供從數(shù)據(jù)標(biāo)注、模型訓(xùn)練、測(cè)試驗(yàn)證到RockChip嵌入式硬件平臺(tái)模型部署的可視化AI開發(fā)功能。SpeedDP提供豐富的算法參數(shù)設(shè)置接口,滿足不同用戶業(yè)務(wù)場(chǎng)景的定制化需求。此外,慧視SpeedDP開發(fā)平臺(tái)支持本地化服務(wù)器部署,數(shù)據(jù)敏感的用戶也無(wú)需擔(dān)心數(shù)據(jù)信息泄露的問(wèn)題。RV1126圖像處理板的目標(biāo)識(shí)別能力突出。湖北研發(fā)AI智能
Viztra-LE034圖像處理板識(shí)別概率超過(guò)85%。江西智慧園區(qū)AI智能供應(yīng)商
SpeedDP有4+3的功能組合,為不同需求的客戶提供定制化服務(wù)。項(xiàng)目配置:含任務(wù)屬性(當(dāng)前支持目標(biāo)檢測(cè))、算法模型(當(dāng)前支持YOLO-X)、項(xiàng)目參數(shù)等;模型訓(xùn)練:支持模型參數(shù)配置、訓(xùn)練過(guò)程可視化等;模型評(píng)估:支持評(píng)價(jià)體系(如:AP)、結(jié)果統(tǒng)計(jì)等;數(shù)據(jù)測(cè)試:支持?jǐn)?shù)據(jù)(圖像、視頻)的實(shí)時(shí)加載測(cè)試,輸出OSD疊加后的測(cè)試結(jié)果;自動(dòng)標(biāo)注:基于導(dǎo)入數(shù)據(jù)集快速生成標(biāo)注結(jié)果,支持標(biāo)注工具(LabelImg)讀取和調(diào)整;(可選)模型部署:支持PC端、嵌入式端(瑞芯微平臺(tái),RKNN/RKNN2)兩種部署方式;(可選)Web服務(wù):支持快速搭建Web服務(wù),用于團(tuán)隊(duì)內(nèi)部或?qū)ν膺M(jìn)行快捷訪問(wèn)和申請(qǐng)服務(wù);(可選)江西智慧園區(qū)AI智能供應(yīng)商