另外,經(jīng)典的跟蹤方法還有基于特征點的光流跟蹤,在目標(biāo)上提取一些特征點,然后在下一幀計算這些特征點的光流匹配點,統(tǒng)計得到目標(biāo)的位置。在跟蹤的過程中,需要不斷補充新的特征點,刪除置信度不佳的特征點,以此來適應(yīng)目標(biāo)在運動中的形狀變化。本質(zhì)上可以認(rèn)為光流跟蹤屬于用特征點的來表征目標(biāo)模型的方法。在深度學(xué)習(xí)和相...
在智慧農(nóng)業(yè)領(lǐng)域可以分為人工干涉和無人值守2種。系統(tǒng)提供了良好的人機界面,用戶可以通過系統(tǒng)的視頻顯示區(qū)觀看攝像機攝制的現(xiàn)場視頻,此時,用戶可以人工通過系統(tǒng)提供的按鈕以各種方式控制云臺,即人工可以干涉監(jiān)控的過程。系統(tǒng)在大部分情況下處于無人值守的工作狀態(tài),當(dāng)監(jiān)控中心的計算機系統(tǒng)收到外場設(shè)備的預(yù)警信號后,將自動向攝像機云臺發(fā)出控制信號,控制攝像機將發(fā)生報警區(qū)域的圖像鎖定在監(jiān)視器上,并同時按系統(tǒng)的設(shè)定調(diào)整好焦距,視野大小等。然后系統(tǒng)自動轉(zhuǎn)入運動檢測,檢測當(dāng)前區(qū)域是否有運動目標(biāo),如果有運動目標(biāo),則系統(tǒng)給出目標(biāo)的一般性描述,提交給目標(biāo)跟蹤模塊,對目標(biāo)進行跟蹤。在這過程中,系統(tǒng)將作日志,記錄事故位置、時間等,同時對采集到的圖像作硬盤錄像。工程師以RK3399PRO核心板為基礎(chǔ)進行定制開發(fā),讓攝像頭更加智能高效,能夠輸出高清流的圖像視頻。寧夏網(wǎng)絡(luò)目標(biāo)跟蹤
由于侵入的目標(biāo)的形狀和顏色等特征是難以固定的,再加上監(jiān)控的場景,即背景往往比較復(fù)雜,只利用一個單幀圖像就找出移動的目標(biāo)是非常困難的。然而,目標(biāo)的運動導(dǎo)致了其運動時間內(nèi),監(jiān)控場景圖像的連續(xù)變化,所以,使用圖像序列分析往往是比較有效的,而且適合于低信噪比的情況。由于監(jiān)控系統(tǒng)通常監(jiān)控的視野比較大,系統(tǒng)設(shè)置的環(huán)境較為惡劣,圖像傳輸?shù)木嚯x較遠,從而導(dǎo)致圖像的信噪比不高,因此采用突出目標(biāo)的方法,需要在配準(zhǔn)的前提下進行多幀能量積累和噪聲抑制。在該技術(shù)中,要研究的問題有,相鄰的兩幅或多幅圖像之間的關(guān)系是什么關(guān)系,是簡單的圖像差的值,還是多幅之間差的最大值,還是其他的與圖像減法之間的其他函數(shù)關(guān)系,是尤其需要研究的。在研究中,研究如何差,如何自動得到差圖像的分割門限,如何減小背景和突出目標(biāo)是研究的方向。什么目標(biāo)跟蹤解決慧視RV1126圖像處理板能實現(xiàn)24小時、無間隙信息化監(jiān)控。
視頻自動跟蹤系統(tǒng),一般都是用在露天的、較大地域范圍的監(jiān)控系統(tǒng)中,且邊跟蹤邊錄像。在自動跟蹤系統(tǒng)的發(fā)展上,jun用上的視頻自動跟蹤、毫米波雷達跟蹤以及激光雷達跟蹤等是比較成熟的;非jun用領(lǐng)域,存在一些固定畫面、攝像機從不運動的的目標(biāo)檢測與跟蹤系統(tǒng);基于帶紅外線的、常用在演播室或者會議室的、很近距離的跟蹤系統(tǒng),目前主要局限于簡單背景(如室內(nèi)環(huán)境下)、大目標(biāo)(即目標(biāo)在視頻圖像中占較大區(qū)域),而且一般無法實現(xiàn)控制攝像機轉(zhuǎn)動來對目標(biāo)進行跟蹤。
視覺目標(biāo)跟蹤是指在視頻圖像序列的各幀圖像中找到被跟蹤的目標(biāo)?;趨^(qū)域的跟蹤的基本思想是通過圖像分割或預(yù)先人為確定,提取包含著運動目標(biāo)的運動變化的區(qū)域范圍作為匹配的目標(biāo)模板,然后把目標(biāo)模板與實時圖像在所有可能位置上進行疊加,然后計算某種圖像相似性度量的相應(yīng)值,其比較大相似性相對應(yīng)的位置就是目標(biāo)的位置,Jorge等人提出的區(qū)域跟蹤算法不僅利用了分割結(jié)果來給跟蹤提供信息,同時也能利用跟蹤所提供的信息改善分割效果,把連續(xù)幀的目標(biāo)匹配起來跟蹤目標(biāo)?;垡旳I板卡能夠凸顯AI的智慧之能,變被動為主動,提供多種能主動預(yù)警的視頻分析和人臉識別黑白名單管理。
在目標(biāo)跟蹤領(lǐng)域,場景信息與目標(biāo)狀態(tài)的融合十分重要,首先,場景信息包含了豐富的環(huán)境上下文信息,對場景信息進行分析及充分利用,能夠有效地獲取場景的先驗知識,降低復(fù)雜的背景環(huán)境以及場景中與目標(biāo)相似的物體的干擾;同樣地,對目標(biāo)的準(zhǔn)確描述有助于提升檢測與跟蹤算法的準(zhǔn)確性與魯棒性.總之,嘗試研究結(jié)合背景信息和前景目標(biāo)信息的分析方法,融合場景信息與目標(biāo)狀態(tài),將有助于提高算法的實用性能。慧視光電開發(fā)的圖像處理板,具備高性能、高精度的特點,能夠進行精確的目標(biāo)跟蹤。慧視光電開發(fā)的RK3588跟蹤板智能目標(biāo)識別及追蹤,讓目標(biāo)無處可藏。電力應(yīng)急目標(biāo)跟蹤優(yōu)勢
慧視光電致力于跟蹤板卡定制。寧夏網(wǎng)絡(luò)目標(biāo)跟蹤
通常,遮擋可以分為三種情況:目標(biāo)間遮擋、背景遮擋、自遮擋。對于目標(biāo)之間的相互遮擋,可以選擇根據(jù)目標(biāo)的位置和目標(biāo)特征的先驗知識來處理這一問題。而對于場景結(jié)構(gòu)的導(dǎo)致的部分遮擋此方法則難以判斷,因為難以辨認(rèn)究竟是目標(biāo)形狀發(fā)生變化還是發(fā)生遮擋。所以,處理遮擋問題的通用方法是用線性或非線性動態(tài)建模方法對運動目標(biāo)進行,并在目標(biāo)發(fā)生遮擋時,預(yù)測目標(biāo)的可能位置,一直到目標(biāo)重新出現(xiàn)時再修正它的位置??梢杂每柭鼮V波器來實現(xiàn)估計目標(biāo)的位置,也可以用粒子濾波對目標(biāo)做狀態(tài)估計。寧夏網(wǎng)絡(luò)目標(biāo)跟蹤
另外,經(jīng)典的跟蹤方法還有基于特征點的光流跟蹤,在目標(biāo)上提取一些特征點,然后在下一幀計算這些特征點的光流匹配點,統(tǒng)計得到目標(biāo)的位置。在跟蹤的過程中,需要不斷補充新的特征點,刪除置信度不佳的特征點,以此來適應(yīng)目標(biāo)在運動中的形狀變化。本質(zhì)上可以認(rèn)為光流跟蹤屬于用特征點的來表征目標(biāo)模型的方法。在深度學(xué)習(xí)和相...
山西人防目標(biāo)檢測
2025-06-21吉林移動目標(biāo)檢測
2025-06-21行為識別圖像識別模塊處理版
2025-06-21山西數(shù)據(jù)目標(biāo)檢測
2025-06-21多系統(tǒng)適配圖像處理板聯(lián)系方式
2025-06-21重慶邊海防視頻壓縮與傳輸提供商
2025-06-21質(zhì)量圖像處理板廠家電話
2025-06-21寧夏圖像處理板分析
2025-06-21國產(chǎn)圖像處理板進貨價
2025-06-21