目標(biāo)跟蹤是在首幀中給定待跟蹤目標(biāo)的情況下,對目標(biāo)進(jìn)行特征提取,對感興趣區(qū)域進(jìn)行分析;然后在后續(xù)圖像中找到相似的特征和感興趣區(qū)域,并對目標(biāo)在下一幀中的位置進(jìn)行預(yù)測。作為計(jì)算機(jī)視覺領(lǐng)域的一個(gè)熱點(diǎn)研究方向,目標(biāo)跟蹤一直都是一項(xiàng)具有挑戰(zhàn)性的工作。目標(biāo)跟蹤技術(shù)在導(dǎo)彈制導(dǎo)、智能監(jiān)控系統(tǒng)、視頻檢索、無人駕駛、人機(jī)交互和工業(yè)機(jī)器人等領(lǐng)域具有重要的作用。從上世紀(jì)50年代目標(biāo)跟蹤的起源到現(xiàn)今,盡管已有大量的研究成果,但是在復(fù)雜條件下實(shí)現(xiàn)實(shí)時(shí)準(zhǔn)確的跟蹤依舊難以實(shí)現(xiàn)。RK3588跟蹤板如何實(shí)現(xiàn)目標(biāo)的識(shí)別及跟蹤?重慶無源目標(biāo)跟蹤
目標(biāo)跟蹤算法具有不同的分類標(biāo)準(zhǔn),可根據(jù)檢測圖像序列的性質(zhì)分為可見光圖像跟蹤和紅外圖像跟蹤;又可根據(jù)運(yùn)動(dòng)場景對象分為靜止背景目標(biāo)跟蹤和運(yùn)動(dòng)背景下的目標(biāo)跟蹤。由于基于區(qū)域的目標(biāo)跟蹤算法用的是目標(biāo)的全局信息,比如灰度、色彩、紋理等。因此當(dāng)目標(biāo)未被遮擋時(shí),跟蹤精度非常高、跟蹤非常穩(wěn)定,對于跟蹤小目標(biāo)效果很好,可信度高。但是在灰度級的圖像上進(jìn)行匹配和全圖搜索,計(jì)算量較大,非常費(fèi)時(shí)間,所以在實(shí)際應(yīng)用中實(shí)用性不強(qiáng);其次,算法要求目標(biāo)不能有太大的遮擋及其形變,否則會(huì)導(dǎo)致匹配精度下降,造成運(yùn)動(dòng)目標(biāo)的丟失。浙江目標(biāo)跟蹤型號RK3588圖像處理板識(shí)別概率超過85%。
傳統(tǒng)意義上的根據(jù)視頻的變化率報(bào)警,隨著由于計(jì)算機(jī)的廣泛應(yīng)用和數(shù)字圖像的發(fā)展,由于其設(shè)置的不靈活、虛警率高、不抗干擾及接口等方面的原因,正慢慢地面臨淘汰;另外,在重要的場所,比如具有戰(zhàn)略意義的油田油庫,*倉庫,重要的機(jī)密場所、辦公地點(diǎn),水利大壩等等,傳統(tǒng)意義上的由人員操作控制鍵盤,鎖定目標(biāo),控制云臺(tái)的運(yùn)動(dòng)來跟蹤目標(biāo)的模式,由于存在監(jiān)視范圍大、人易疲勞和連續(xù)反應(yīng)速度遲緩等方面的缺陷,這些領(lǐng)域?qū)ψ詣?dòng)視頻跟蹤的需求日益迫切。
視覺跟蹤技術(shù)是計(jì)算機(jī)視覺領(lǐng)域(人工智能分支)的一個(gè)重要課題,有著重要的研究意義;且在導(dǎo)彈制導(dǎo)、視頻監(jiān)控、機(jī)器人視覺導(dǎo)航、人機(jī)交互、以及醫(yī)療診斷等許多方面有著廣泛的應(yīng)用前景。隨著研究人員不斷地深入研究,視覺目標(biāo)跟蹤在近十幾年里有了突破性的進(jìn)展,使得視覺跟蹤算法不只是局限于傳統(tǒng)的機(jī)器學(xué)習(xí)方法,更是結(jié)合了近些年人工智能熱潮—深度學(xué)習(xí)(神經(jīng)網(wǎng)絡(luò))和相關(guān)濾波器等方法,并取得了魯棒(robust)、精確、穩(wěn)定的結(jié)果。智能化的圖像處理板還可以實(shí)現(xiàn)自動(dòng)化的數(shù)據(jù)分析,實(shí)現(xiàn)降本增效。
視覺目標(biāo)跟蹤是指在視頻圖像序列的各幀圖像中找到被跟蹤的目標(biāo)?;趨^(qū)域的跟蹤的基本思想是通過圖像分割或預(yù)先人為確定,提取包含著運(yùn)動(dòng)目標(biāo)的運(yùn)動(dòng)變化的區(qū)域范圍作為匹配的目標(biāo)模板,然后把目標(biāo)模板與實(shí)時(shí)圖像在所有可能位置上進(jìn)行疊加,然后計(jì)算某種圖像相似性度量的相應(yīng)值,其比較大相似性相對應(yīng)的位置就是目標(biāo)的位置,Jorge等人提出的區(qū)域跟蹤算法不僅利用了分割結(jié)果來給跟蹤提供信息,同時(shí)也能利用跟蹤所提供的信息改善分割效果,把連續(xù)幀的目標(biāo)匹配起來跟蹤目標(biāo)?;垡暪怆婇_發(fā)的RK3588跟蹤板智能目標(biāo)識(shí)別及追蹤,讓目標(biāo)無處可藏。浙江目標(biāo)跟蹤型號
RV1126處理板如何實(shí)現(xiàn)目標(biāo)的識(shí)別及跟蹤?重慶無源目標(biāo)跟蹤
我們要追蹤的目標(biāo)可以是各式各樣,可能是人類,例如街上的行人、場上的運(yùn)動(dòng)員等等,也可以是汽車、飛機(jī)、船舶,甚至可以是顯微鏡下的細(xì)胞。雖然對象不盡相同,但是我們都有同一個(gè)目的,那就是想要確定這些目標(biāo)的位置,去向和其他感興趣的特征等等,這就是多目標(biāo)追蹤。研究多目標(biāo)追蹤的歷史,會(huì)發(fā)現(xiàn)首先是在二戰(zhàn)時(shí)用作對敵機(jī)的預(yù)警系統(tǒng),基本思想是讓雷達(dá)傳感器發(fā)射能量,然后一些能量被飛機(jī)反射回來,再被雷達(dá)捕獲,根據(jù)時(shí)間來推算距離和方位。如今,基于雷達(dá)的對飛機(jī)的追蹤在民用和非民用領(lǐng)域仍然有很多應(yīng)用。重慶無源目標(biāo)跟蹤