YOLO算法具有以下幾個明顯的優(yōu)勢:快速高效:YOLO算法采用單次前向傳播的方式進(jìn)行目標(biāo)檢測和跟蹤,相比傳統(tǒng)方法的多次掃描圖像,速度更快,適用于實時應(yīng)用。準(zhǔn)確性較高:通過引入先進(jìn)的卷積神經(jīng)網(wǎng)絡(luò)和相關(guān)技術(shù),YOLO算法在目標(biāo)定位和類別預(yù)測方面具有較高的準(zhǔn)確性。多尺度處理:YOLO算法通過特征金字塔網(wǎng)絡(luò)和多尺度預(yù)測技術(shù),可以處理不同大小的目標(biāo),并保持對小目標(biāo)的有效檢測。端到端訓(xùn)練:YOLO算法可以進(jìn)行端到端的訓(xùn)練,避免了多階段處理的復(fù)雜性,簡化了算法的實現(xiàn)和使用。RK3399PRO圖像處理板是我司自主研發(fā)的目標(biāo)跟蹤板,該板卡采用國產(chǎn)高性能CPU,搭載自研目標(biāo)跟蹤及跟蹤算法。專業(yè)目標(biāo)跟蹤性價比
設(shè)想這樣一個場景:孫悟空在飛行過程中完成了一次變化(這里假設(shè)他變成了一只鳥),但這個變化并不是像西游記拍攝中有煙霧效果完成的,而就是通過身體結(jié)構(gòu)發(fā)生漸變來完成的,這種情況下,檢測器應(yīng)該會在后續(xù)的檢測任務(wù)中失敗,因為設(shè)計好的檢測器只是為了檢測目標(biāo)孫悟空的存在,孫悟空變身之后已經(jīng)不存在這個目標(biāo),檢測器是不會有火眼金睛繼續(xù)檢測到變化后的孫悟空的。但是,對于跟蹤設(shè)備就不一樣了,跟蹤目標(biāo),哪怕目標(biāo)在跟蹤過程中發(fā)生了巨大變化,這些都是跟蹤設(shè)備的本質(zhì)能力。理想的跟蹤設(shè)備應(yīng)該可以很好的跟上孫悟空漸變的整個過程,并且可以繼續(xù)后面變身之后對鳥的跟蹤。耐用目標(biāo)跟蹤批發(fā)價格目標(biāo)跟蹤的板卡哪家做的好呀?
視覺跟蹤技術(shù)是計算機(jī)視覺領(lǐng)域(人工智能分支)的一個重要課題,有著重要的研究意義;且在導(dǎo)彈制導(dǎo)、視頻監(jiān)控、機(jī)器人視覺導(dǎo)航、人機(jī)交互、以及醫(yī)療診斷等許多方面有著廣泛的應(yīng)用前景。隨著研究人員不斷地深入研究,視覺目標(biāo)跟蹤在近十幾年里有了突破性的進(jìn)展,使得視覺跟蹤算法不只是局限于傳統(tǒng)的機(jī)器學(xué)習(xí)方法,更是結(jié)合了近些年人工智能熱潮—深度學(xué)習(xí)(神經(jīng)網(wǎng)絡(luò))和相關(guān)濾波器等方法,并取得了魯棒(robust)、精確、穩(wěn)定的結(jié)果。
目標(biāo)檢測與目標(biāo)跟蹤這兩個任務(wù)有著密切的聯(lián)系。針對目標(biāo)跟蹤任務(wù),微軟亞洲研究院提出了一種通過目標(biāo)檢測技術(shù)來解決的新視角,采用簡潔、統(tǒng)一而高效的“目標(biāo)檢測+小樣本學(xué)習(xí)”框架,在多個主流數(shù)據(jù)集上均取得了杰出性能。目標(biāo)跟蹤(Object tracking)與目標(biāo)檢測(Object detection)是計算機(jī)視覺中兩個經(jīng)典的基礎(chǔ)任務(wù)。跟蹤任務(wù)需要由用戶指定跟蹤目標(biāo),然后在視頻的每一幀中給出該目標(biāo)所在的位置,通常由一系列的矩形邊界框表示。而檢測任務(wù)旨在定位圖片中某幾類物體的坐標(biāo)位置。對物體的檢測、識別和跟蹤能夠有效地幫助機(jī)器理解圖片視頻的內(nèi)容,為后續(xù)的進(jìn)一步分析打下基礎(chǔ)。目標(biāo)跟蹤圖像分析是人工智能的重要組成部分。
人工智能起源于上個世紀(jì)五十年代,被譽(yù)為新時代工業(yè)發(fā)展的引擎。隨著技術(shù)的發(fā)展,為了使得計算機(jī)可以擁有像人眼一樣感知、分析、處理現(xiàn)實世界的能力,六十年代初,人工智能衍生出了一個重要的分支,計算機(jī)視覺。在計算機(jī)視覺的研究過程中,學(xué)者們?yōu)榱岁U述“根據(jù)目標(biāo)在視頻中的某一幀狀態(tài)來估計其在后續(xù)幀中的狀態(tài)”,一個新的學(xué)科——目標(biāo)跟蹤應(yīng)運(yùn)而生。目標(biāo)跟蹤是計算機(jī)視覺和機(jī)器人研發(fā)領(lǐng)域的重要分支,在人機(jī)交互、安全監(jiān)控、自動駕駛、城市交通、軍領(lǐng)域、醫(yī)療診斷等領(lǐng)域都發(fā)揮了重要的作用,其主要功能就是在視頻圖像中遍歷感興趣的區(qū)域,并在接下來的視頻幀中對其進(jìn)行跟蹤成都慧視的跟蹤版是國產(chǎn)化的!低壓線目標(biāo)跟蹤檢測
智能目標(biāo)識別及追蹤,讓目標(biāo)無處可藏。專業(yè)目標(biāo)跟蹤性價比
視覺目標(biāo)跟蹤是指對圖像序列中的運(yùn)動目標(biāo)進(jìn)行檢測、提取、識別和跟蹤,獲得運(yùn)動目標(biāo)的運(yùn)動參數(shù),如位置、速度、加速度和運(yùn)動軌跡等,從而進(jìn)行下一步的處理與分析,實現(xiàn)對運(yùn)動目標(biāo)的行為理解,以完成更高一級的檢測任務(wù)。根據(jù)跟蹤目標(biāo)的數(shù)量可以將跟蹤算法分為單目標(biāo)跟蹤與多目標(biāo)跟蹤。相比單目標(biāo)跟蹤而言,多目標(biāo)跟蹤問題更加復(fù)雜和困難。多目標(biāo)跟蹤問題需要考慮視頻序列中多個單獨(dú)目標(biāo)的位置、大小等數(shù)據(jù),多個目標(biāo)各自外觀的變化、不同的運(yùn)動方式、動態(tài)光照的影響以及多個目標(biāo)之間相互遮擋、合并與分離等情況均是多目標(biāo)跟蹤問題中的難點(diǎn)。專業(yè)目標(biāo)跟蹤性價比