另外,經(jīng)典的跟蹤方法還有基于特征點的光流跟蹤,在目標(biāo)上提取一些特征點,然后在下一幀計算這些特征點的光流匹配點,統(tǒng)計得到目標(biāo)的位置。在跟蹤的過程中,需要不斷補充新的特征點,刪除置信度不佳的特征點,以此來適應(yīng)目標(biāo)在運動中的形狀變化。本質(zhì)上可以認(rèn)為光流跟蹤屬于用特征點的來表征目標(biāo)模型的方法。在深度學(xué)習(xí)和相...
傳統(tǒng)意義上的根據(jù)視頻的變化率報警,隨著由于計算機的廣泛應(yīng)用和數(shù)字圖像的發(fā)展,由于其設(shè)置的不靈活、虛警率高、不抗干擾及接口等方面的原因,正慢慢地面臨淘汰;另外,在重要的場所,比如具有戰(zhàn)略意義的油田油庫,*倉庫,重要的機密場所、辦公地點,水利大壩等等,傳統(tǒng)意義上的由人員操作控制鍵盤,鎖定目標(biāo),控制云臺的運動來跟蹤目標(biāo)的模式,由于存在監(jiān)視范圍大、人易疲勞和連續(xù)反應(yīng)速度遲緩等方面的缺陷,這些領(lǐng)域?qū)ψ詣右曨l跟蹤的需求日益迫切。圖像識別跟蹤可以在有些領(lǐng)域代替人員實現(xiàn)24小時不間斷監(jiān)測!廣東工業(yè)目標(biāo)跟蹤
另外,經(jīng)典的跟蹤方法還有基于特征點的光流跟蹤,在目標(biāo)上提取一些特征點,然后在下一幀計算這些特征點的光流匹配點,統(tǒng)計得到目標(biāo)的位置。在跟蹤的過程中,需要不斷補充新的特征點,刪除置信度不佳的特征點,以此來適應(yīng)目標(biāo)在運動中的形狀變化。本質(zhì)上可以認(rèn)為光流跟蹤屬于用特征點的來表征目標(biāo)模型的方法。在深度學(xué)習(xí)和相關(guān)濾波的跟蹤方法出現(xiàn)后,經(jīng)典的跟蹤方法都被舍棄,這主要是因為這些經(jīng)典方法無法處理和適應(yīng)復(fù)雜的跟蹤變化,它們的魯棒性和準(zhǔn)確度都被前沿的算法所超越,但是,了解它們對理解跟蹤過程是有必要的,有些方法在工程上仍然有十分重要的應(yīng)用,常常被當(dāng)作一種重要的輔助手段。廣東工業(yè)目標(biāo)跟蹤RK3588處理板,智慧視覺應(yīng)用開發(fā)板。
YOLO算法的關(guān)鍵技術(shù)在YOLO算法中,有幾個關(guān)鍵技術(shù)對其性能起著重要作用。首先是使用卷積神經(jīng)網(wǎng)絡(luò)提取圖像特征,其中引入了一些先進(jìn)的網(wǎng)絡(luò)結(jié)構(gòu),如Darknet。其次是使用AnchorBox來提高目標(biāo)定位的精度。此外,YOLO算法還引入了特征金字塔網(wǎng)絡(luò)和多尺度預(yù)測等技術(shù),以處理不同大小的目標(biāo)。YOLO算法在實時目標(biāo)檢測和跟蹤中的應(yīng)用YOLO算法在實時目標(biāo)檢測和跟蹤領(lǐng)域取得了明顯的成果。它不僅在檢測速度上遠(yuǎn)超傳統(tǒng)方法,而且在目標(biāo)定位和類別預(yù)測準(zhǔn)確性上也表現(xiàn)出色。因此,YOLO算法在許多應(yīng)用中得到了廣泛應(yīng)用,如視頻監(jiān)控、自動駕駛和物體識別等。
安全生產(chǎn)一直是發(fā)展過程中不變的話題。當(dāng)前,我國建筑行業(yè)正處于高速發(fā)展階段,不少建筑工地陸續(xù)開工,建筑行業(yè)安全也越發(fā)受到社會各界的關(guān)注。該行業(yè)以事故高發(fā)、危險系數(shù)高而聞名,建筑工人常常暴露于高處墜落、電氣和化學(xué)危險以及涉及重型機械和車輛的環(huán)境中。一般情況下,工地開工都會對工人進(jìn)行安全教育培訓(xùn),并且設(shè)有安全監(jiān)管人員,但純?nèi)肆ΡO(jiān)管,常常因為疏忽大意釀成悲劇。加入科技的力量如監(jiān)控等設(shè)備來輔助人力監(jiān)管是一個很好的補充,但是傳統(tǒng)監(jiān)控也需要人守在屏幕前,也具有不小的弊端。于是,慧視光電基于AI圖像處理的監(jiān)控監(jiān)管方案就應(yīng)運而生?;垡昍V1126圖像處理板能實現(xiàn)24小時、無間隙信息化監(jiān)控。
目標(biāo)跟蹤算法具有不同的分類標(biāo)準(zhǔn),可根據(jù)檢測圖像序列的性質(zhì)分為可見光圖像跟蹤和紅外圖像跟蹤;又可根據(jù)運動場景對象分為靜止背景目標(biāo)跟蹤和運動背景下的目標(biāo)跟蹤。由于基于區(qū)域的目標(biāo)跟蹤算法用的是目標(biāo)的全局信息,比如灰度、色彩、紋理等。因此當(dāng)目標(biāo)未被遮擋時,跟蹤精度非常高、跟蹤非常穩(wěn)定,對于跟蹤小目標(biāo)效果很好,可信度高。但是在灰度級的圖像上進(jìn)行匹配和全圖搜索,計算量較大,非常費時間,所以在實際應(yīng)用中實用性不強;其次,算法要求目標(biāo)不能有太大的遮擋及其形變,否則會導(dǎo)致匹配精度下降,造成運動目標(biāo)的丟失?;垡旳I板卡能夠凸顯AI的智慧之能,變被動為主動,提供多種能主動預(yù)警的視頻分析和人臉識別黑白名單管理。廣東工業(yè)目標(biāo)跟蹤
目標(biāo)跟蹤圖像分析是人工智能的重要組成部分。廣東工業(yè)目標(biāo)跟蹤
在智慧農(nóng)業(yè)領(lǐng)域可以分為人工干涉和無人值守2種。系統(tǒng)提供了良好的人機界面,用戶可以通過系統(tǒng)的視頻顯示區(qū)觀看攝像機攝制的現(xiàn)場視頻,此時,用戶可以人工通過系統(tǒng)提供的按鈕以各種方式控制云臺,即人工可以干涉監(jiān)控的過程。系統(tǒng)在大部分情況下處于無人值守的工作狀態(tài),當(dāng)監(jiān)控中心的計算機系統(tǒng)收到外場設(shè)備的預(yù)警信號后,將自動向攝像機云臺發(fā)出控制信號,控制攝像機將發(fā)生報警區(qū)域的圖像鎖定在監(jiān)視器上,并同時按系統(tǒng)的設(shè)定調(diào)整好焦距,視野大小等。然后系統(tǒng)自動轉(zhuǎn)入運動檢測,檢測當(dāng)前區(qū)域是否有運動目標(biāo),如果有運動目標(biāo),則系統(tǒng)給出目標(biāo)的一般性描述,提交給目標(biāo)跟蹤模塊,對目標(biāo)進(jìn)行跟蹤。在這過程中,系統(tǒng)將作日志,記錄事故位置、時間等,同時對采集到的圖像作硬盤錄像。廣東工業(yè)目標(biāo)跟蹤
另外,經(jīng)典的跟蹤方法還有基于特征點的光流跟蹤,在目標(biāo)上提取一些特征點,然后在下一幀計算這些特征點的光流匹配點,統(tǒng)計得到目標(biāo)的位置。在跟蹤的過程中,需要不斷補充新的特征點,刪除置信度不佳的特征點,以此來適應(yīng)目標(biāo)在運動中的形狀變化。本質(zhì)上可以認(rèn)為光流跟蹤屬于用特征點的來表征目標(biāo)模型的方法。在深度學(xué)習(xí)和相...
成都圖像識別模塊產(chǎn)品
2025-06-17山西RK3399Pro主板圖像識別模塊算法定制
2025-06-16吉林窄帶視頻壓縮與傳輸可視化指揮
2025-06-16重慶RV1126主板圖像識別模塊性能如何
2025-06-16流暢圖像處理板好選擇
2025-06-16監(jiān)控視頻壓縮與傳輸系統(tǒng)
2025-06-16可視化視頻壓縮與傳輸交互系統(tǒng)
2025-06-16重慶窄帶多路視頻壓縮與傳輸供應(yīng)商
2025-06-16四川安保視頻壓縮與傳輸技術(shù)
2025-06-16