目標(biāo)檢測(cè)和跟蹤是計(jì)算機(jī)視覺(jué)領(lǐng)域中的重要任務(wù)之一。隨著深度學(xué)習(xí)的興起,YOLO(You Only Look Once)算法在目標(biāo)檢測(cè)和跟蹤領(lǐng)域引起了廣關(guān)注。YOLO算法是一種在實(shí)時(shí)目標(biāo)檢測(cè)和跟蹤領(lǐng)域具有重要地位的算法。通過(guò)引入卷積神經(jīng)網(wǎng)絡(luò)和一系列先進(jìn)技術(shù),YOLO算法在速度和準(zhǔn)確性方面取得了明顯的進(jìn)展。然而,仍然有一些挑戰(zhàn)需要解決,如目標(biāo)尺度變化、小目標(biāo)檢測(cè)和復(fù)雜背景干擾等。隨著研究的不斷深入和技術(shù)的不斷發(fā)展,YOLO算法有望在實(shí)時(shí)目標(biāo)檢測(cè)和跟蹤領(lǐng)域發(fā)揮更大的作用。工程師以RK3588核心板為基礎(chǔ)進(jìn)行定制開(kāi)發(fā),讓攝像頭更加智能高效,能夠輸出高清流的圖像視頻。高性能目標(biāo)跟蹤有哪些
然后在下一幀采集的圖像中對(duì)目標(biāo)對(duì)象進(jìn)行特征提??;特征匹配的過(guò)程既是將提取出來(lái)的目標(biāo)對(duì)象的特征與我們事先已經(jīng)建立的特征模板進(jìn)行匹配,通過(guò)與特征模板的相似程度來(lái)確定被跟蹤的目標(biāo)對(duì)象,實(shí)現(xiàn)對(duì)目標(biāo)的跟蹤。基于特征的跟蹤算法的優(yōu)點(diǎn)在于速度快、對(duì)運(yùn)動(dòng)目標(biāo)的尺度、形變和亮度等變化不敏感,能滿(mǎn)足特定場(chǎng)合的處理要求。但由于特征具有稀疏性和不規(guī)則性,所以該算法對(duì)于噪聲、遮擋、圖像模糊等比較敏感,如果目標(biāo)發(fā)生旋轉(zhuǎn),則部分特征點(diǎn)會(huì)消失,新的特征點(diǎn)會(huì)出現(xiàn),因此需要對(duì)匹配模板進(jìn)行更新。視頻目標(biāo)跟蹤解決有沒(méi)有做全國(guó)產(chǎn)后跟蹤版的公司?
序列圖像的差異通常是運(yùn)動(dòng)目標(biāo)檢測(cè)和跟蹤的出發(fā)點(diǎn),認(rèn)為目標(biāo)的運(yùn)動(dòng)是圖像差異的根本原因。但是,這是建立在背景本身不運(yùn)動(dòng)的前提下的。因此,在許多跟蹤系統(tǒng)中,比如車(chē)載,由于車(chē)的振動(dòng)導(dǎo)致傳感器位置的變化,表現(xiàn)在圖像上就是背景的運(yùn)動(dòng),因此在做差圖像和背景自動(dòng)更新之前,都必須先經(jīng)過(guò)配準(zhǔn),即讓所有圖像在都同一個(gè)坐標(biāo)系之下,以消除背景的運(yùn)動(dòng)。在不同的應(yīng)用場(chǎng)合,配準(zhǔn)的方法多種多樣,比如當(dāng)兩個(gè)圖像之間只有平移變化時(shí),計(jì)算出它們的平移量即可實(shí)現(xiàn)配準(zhǔn);由于平移變化對(duì)圖像的相位信息影響較大,在頻率域利用相位相關(guān)可以實(shí)現(xiàn)配準(zhǔn)。
傳統(tǒng)意義上的根據(jù)視頻的變化率報(bào)警,隨著由于計(jì)算機(jī)的廣泛應(yīng)用和數(shù)字圖像的發(fā)展,由于其設(shè)置的不靈活、虛警率高、不抗干擾及接口等方面的原因,正慢慢地面臨淘汰;另外,在重要的場(chǎng)所,比如具有戰(zhàn)略意義的油田油庫(kù),*倉(cāng)庫(kù),重要的機(jī)密場(chǎng)所、辦公地點(diǎn),水利大壩等等,傳統(tǒng)意義上的由人員操作控制鍵盤(pán),鎖定目標(biāo),控制云臺(tái)的運(yùn)動(dòng)來(lái)跟蹤目標(biāo)的模式,由于存在監(jiān)視范圍大、人易疲勞和連續(xù)反應(yīng)速度遲緩等方面的缺陷,這些領(lǐng)域?qū)ψ詣?dòng)視頻跟蹤的需求日益迫切。RK2588搭載AI智能算法,實(shí)現(xiàn)目標(biāo)識(shí)別與跟蹤。
目標(biāo)跟蹤算法具有不同的分類(lèi)標(biāo)準(zhǔn),可根據(jù)檢測(cè)圖像序列的性質(zhì)分為可見(jiàn)光圖像跟蹤和紅外圖像跟蹤;又可根據(jù)運(yùn)動(dòng)場(chǎng)景對(duì)象分為靜止背景目標(biāo)跟蹤和運(yùn)動(dòng)背景下的目標(biāo)跟蹤。由于基于區(qū)域的目標(biāo)跟蹤算法用的是目標(biāo)的全局信息,比如灰度、色彩、紋理等。因此當(dāng)目標(biāo)未被遮擋時(shí),跟蹤精度非常高、跟蹤非常穩(wěn)定,對(duì)于跟蹤小目標(biāo)效果很好,可信度高。但是在灰度級(jí)的圖像上進(jìn)行匹配和全圖搜索,計(jì)算量較大,非常費(fèi)時(shí)間,所以在實(shí)際應(yīng)用中實(shí)用性不強(qiáng);其次,算法要求目標(biāo)不能有太大的遮擋及其形變,否則會(huì)導(dǎo)致匹配精度下降,造成運(yùn)動(dòng)目標(biāo)的丟失?;垡曃⑿碗p光吊艙能夠?qū)崿F(xiàn)晝夜成像。高性能目標(biāo)跟蹤有哪些
成都慧視光電技術(shù)有限公司推出基于全國(guó)產(chǎn)化RK3399PRO板的高性能圖像處理板卡。高性能目標(biāo)跟蹤有哪些
實(shí)際上,跟蹤和檢測(cè)是分不開(kāi)的,比如傳統(tǒng)TLD框架使用的在線(xiàn)學(xué)習(xí)檢測(cè)器,或KCF密集采樣訓(xùn)練的檢測(cè)器,以及當(dāng)前基于深度學(xué)習(xí)的卷積特征跟蹤框架。一方面,跟蹤能夠保證速度上的需要,而檢測(cè)能夠有效地修正跟蹤的累計(jì)誤差。不同的應(yīng)用場(chǎng)合對(duì)跟蹤的要求也不一樣,比如特定目標(biāo)跟蹤中的人臉跟蹤,在跟蹤成功率、準(zhǔn)確度和魯棒性方面都有具體的要求。另外,跟蹤的另一個(gè)分支是多目標(biāo)跟蹤(MultipleObjectTracking)。多目標(biāo)跟蹤并不是簡(jiǎn)單的多個(gè)單目標(biāo)跟蹤,因?yàn)樗粌H涉及到各個(gè)目標(biāo)的持續(xù)跟蹤,還涉及到不同目標(biāo)之間的身份識(shí)別、自遮擋和互遮擋的處理,以及跟蹤和檢測(cè)結(jié)果的數(shù)據(jù)關(guān)聯(lián)等。高性能目標(biāo)跟蹤有哪些