另外,經(jīng)典的跟蹤方法還有基于特征點的光流跟蹤,在目標(biāo)上提取一些特征點,然后在下一幀計算這些特征點的光流匹配點,統(tǒng)計得到目標(biāo)的位置。在跟蹤的過程中,需要不斷補(bǔ)充新的特征點,刪除置信度不佳的特征點,以此來適應(yīng)目標(biāo)在運動中的形狀變化。本質(zhì)上可以認(rèn)為光流跟蹤屬于用特征點的來表征目標(biāo)模型的方法。在深度學(xué)習(xí)和相...
視覺目標(biāo)跟蹤是指對圖像序列中的運動目標(biāo)進(jìn)行檢測、提取、識別和跟蹤,獲得運動目標(biāo)的運動參數(shù),如位置、速度、加速度和運動軌跡等,從而進(jìn)行下一步的處理與分析,實現(xiàn)對運動目標(biāo)的行為理解,以完成更高一級的檢測任務(wù)。根據(jù)跟蹤目標(biāo)的數(shù)量可以將跟蹤算法分為單目標(biāo)跟蹤與多目標(biāo)跟蹤。相比單目標(biāo)跟蹤而言,多目標(biāo)跟蹤問題更加復(fù)雜和困難。多目標(biāo)跟蹤問題需要考慮視頻序列中多個單獨目標(biāo)的位置、大小等數(shù)據(jù),多個目標(biāo)各自外觀的變化、不同的運動方式、動態(tài)光照的影響以及多個目標(biāo)之間相互遮擋、合并與分離等情況均是多目標(biāo)跟蹤問題中的難點?;垡暪怆婇_發(fā)的RK3588跟蹤板智能目標(biāo)識別及追蹤,讓目標(biāo)無處可藏。比較好的目標(biāo)跟蹤廠家電話
目標(biāo)運動估計是根據(jù)目標(biāo)在過去的位置對目標(biāo)的運動規(guī)律加以總結(jié),并以此對目標(biāo)將來的運動狀態(tài)進(jìn)行預(yù)測。正確的預(yù)測,可以縮小匹配的計算區(qū)域,大幅的降低匹配計算量。在視頻跟蹤系統(tǒng)中由于被跟蹤的目標(biāo)處于運動狀態(tài),為了把目標(biāo)始終保持在攝像機(jī)視野之內(nèi),必須對攝像機(jī)加以控制。在實際應(yīng)用中,攝像機(jī)被固定在云臺上,云臺本身不做平移運動,但可以控制云臺進(jìn)行水平擺動和上下俯仰,從而帶動攝像機(jī)做相應(yīng)運動。所以,對攝像機(jī)的控制就是對云臺的控制。比較好的目標(biāo)跟蹤廠家電話RK3588作為慧視光電開發(fā)的全國產(chǎn)化工業(yè)級板卡,具備高性能、高精度的優(yōu)點。
視頻監(jiān)控中的多目標(biāo)跟蹤(MTT)是一項重要而富有挑戰(zhàn)性的任務(wù),由于其在各個領(lǐng)域的潛在應(yīng)用而引起了研究人員的大量關(guān)注。多目標(biāo)跟蹤任務(wù)需要在每幀中單獨定位目標(biāo),這仍然是一個巨大的挑戰(zhàn),因為目標(biāo)的外觀會立即發(fā)生變化,并且會出現(xiàn)極端的遮擋。除此之外,多目標(biāo)跟蹤框架需要執(zhí)行多個任務(wù),即目標(biāo)檢測、軌跡估計、幀間關(guān)聯(lián)和重新識別。多目標(biāo)跟蹤分為目標(biāo)檢測和跟蹤兩個主要任務(wù)。為了區(qū)分組內(nèi)對象,MTT算法將ID與在特定時間內(nèi)保持特定于該對象的每個檢測到的對象相關(guān)聯(lián)。然后利用這些ID來生成被跟蹤對象的運動軌跡。
我們要追蹤的目標(biāo)可以是各式各樣,可能是人類,例如街上的行人、場上的運動員等等,也可以是汽車、飛機(jī)、船舶,甚至可以是顯微鏡下的細(xì)胞。雖然對象不盡相同,但是我們都有同一個目的,那就是想要確定這些目標(biāo)的位置,去向和其他感興趣的特征等等,這就是多目標(biāo)追蹤。研究多目標(biāo)追蹤的歷史,會發(fā)現(xiàn)首先是在二戰(zhàn)時用作對敵機(jī)的預(yù)警系統(tǒng),基本思想是讓雷達(dá)傳感器發(fā)射能量,然后一些能量被飛機(jī)反射回來,再被雷達(dá)捕獲,根據(jù)時間來推算距離和方位。如今,基于雷達(dá)的對飛機(jī)的追蹤在民用和非民用領(lǐng)域仍然有很多應(yīng)用。慧視RK3588圖像跟蹤板支持目標(biāo)跟蹤識別目標(biāo)(人、車)。
目標(biāo)檢測與目標(biāo)跟蹤這兩個任務(wù)有著密切的聯(lián)系。針對目標(biāo)跟蹤任務(wù),微軟亞洲研究院提出了一種通過目標(biāo)檢測技術(shù)來解決的新視角,采用簡潔、統(tǒng)一而高效的“目標(biāo)檢測+小樣本學(xué)習(xí)”框架,在多個主流數(shù)據(jù)集上均取得了杰出性能。目標(biāo)跟蹤(Object tracking)與目標(biāo)檢測(Object detection)是計算機(jī)視覺中兩個經(jīng)典的基礎(chǔ)任務(wù)。跟蹤任務(wù)需要由用戶指定跟蹤目標(biāo),然后在視頻的每一幀中給出該目標(biāo)所在的位置,通常由一系列的矩形邊界框表示。而檢測任務(wù)旨在定位圖片中某幾類物體的坐標(biāo)位置。對物體的檢測、識別和跟蹤能夠有效地幫助機(jī)器理解圖片視頻的內(nèi)容,為后續(xù)的進(jìn)一步分析打下基礎(chǔ)。成都RK3588智能跟蹤板提供商。比較好的目標(biāo)跟蹤廠家電話
慧視光電的RK3588跟蹤板怎么樣?比較好的目標(biāo)跟蹤廠家電話
在目標(biāo)跟蹤領(lǐng)域,場景信息與目標(biāo)狀態(tài)的融合十分重要,首先,場景信息包含了豐富的環(huán)境上下文信息,對場景信息進(jìn)行分析及充分利用,能夠有效地獲取場景的先驗知識,降低復(fù)雜的背景環(huán)境以及場景中與目標(biāo)相似的物體的干擾;同樣地,對目標(biāo)的準(zhǔn)確描述有助于提升檢測與跟蹤算法的準(zhǔn)確性與魯棒性.總之,嘗試研究結(jié)合背景信息和前景目標(biāo)信息的分析方法,融合場景信息與目標(biāo)狀態(tài),將有助于提高算法的實用性能?;垡暪怆婇_發(fā)的圖像處理板,具備高性能、高精度的特點,能夠進(jìn)行精確的目標(biāo)跟蹤。比較好的目標(biāo)跟蹤廠家電話
另外,經(jīng)典的跟蹤方法還有基于特征點的光流跟蹤,在目標(biāo)上提取一些特征點,然后在下一幀計算這些特征點的光流匹配點,統(tǒng)計得到目標(biāo)的位置。在跟蹤的過程中,需要不斷補(bǔ)充新的特征點,刪除置信度不佳的特征點,以此來適應(yīng)目標(biāo)在運動中的形狀變化。本質(zhì)上可以認(rèn)為光流跟蹤屬于用特征點的來表征目標(biāo)模型的方法。在深度學(xué)習(xí)和相...
安徽智能圖像識別模塊解決方案
2025-06-17哪些圖像處理板價格多少
2025-06-17甘肅監(jiān)控視頻壓縮與傳輸
2025-06-17遼寧人臉識別圖像識別模塊定制方案
2025-06-17成都圖像識別模塊產(chǎn)品
2025-06-17山西RK3399Pro主板圖像識別模塊算法定制
2025-06-16吉林窄帶視頻壓縮與傳輸可視化指揮
2025-06-16重慶RV1126主板圖像識別模塊性能如何
2025-06-16流暢圖像處理板好選擇
2025-06-16