1980年,Sigworth、Hamill、Neher等在記錄電極內(nèi)施加負(fù)壓吸引,得到了10~100GΩ的高阻封接(gigaseal),降低記錄噪聲,實(shí)現(xiàn)了單根電極既鉗制膜電位又記錄單通道電流。獲1991年Nobel獎(jiǎng)。1955年,Hodgkin和Keens應(yīng)用電壓鉗(Voltageclap)在研究神經(jīng)軸突膜對(duì)鉀離子通透性時(shí)發(fā)現(xiàn)放射性鉀跨軸突膜的運(yùn)動(dòng)很像是通過許多狹窄空洞的運(yùn)動(dòng),并提出了"通道"的概念。1963年,描述電壓門控動(dòng)力學(xué)的Hodgkin-Hx上模型(簡稱H-H模型)榮獲譜貝爾醫(yī)學(xué)/生理學(xué)獎(jiǎng)。1976年,Neher和Sakmann建立膜片鉗(Patchclamp)按術(shù)。1983年10月,《Single-ChannelRecording》一書問世,奠定了膜片鉗技術(shù)的里程碑。1991年,Neher和Sakmann的膜片鋪技術(shù)榮獲諾貝爾醫(yī)學(xué)/生理學(xué)獎(jiǎng)。膜片鉗記錄技術(shù)與較早的單電極電壓鉗位相比進(jìn)步了很多,尤其在單離子通道鉗位記錄方面。日本全自動(dòng)膜片鉗細(xì)胞功能特性
膜片鉗技術(shù)本質(zhì)上也屬于電壓鉗范疇,兩者的區(qū)別關(guān)鍵在于:①膜電位固定的方法不同;②電位固定的細(xì)胞膜面積不同,進(jìn)而所研究的離子通道數(shù)目不同。電壓鉗技術(shù)主要是通過保持細(xì)胞跨膜電位不變,并迅速控制其數(shù)值,以觀察在不同膜電位條件下膜電流情況。因此只能用來研究整個(gè)細(xì)胞膜或一大塊細(xì)胞膜上所有離子通道活動(dòng)。目前電壓鉗主要用于巨大細(xì)胞的全性能電流的研究,特別在分子克隆的卵母細(xì)胞表達(dá)電流的鑒定中發(fā)揮著其他技術(shù)不能替代的作用。該技術(shù)的主要缺陷是必須在細(xì)胞內(nèi)插入兩個(gè)電極,對(duì)細(xì)胞損傷很大,在小細(xì)胞如元,就難以實(shí)現(xiàn),又因細(xì)胞形態(tài)復(fù)雜,很難保持細(xì)胞膜各處生物特性的一致。滔博生物TOP-Bright專注基于多種離子通道靶點(diǎn)的化合物體外篩選,服務(wù)于全球藥企的膜片鉗公司,快速獲得實(shí)驗(yàn)結(jié)果,專業(yè)團(tuán)隊(duì),7*49小時(shí)隨時(shí)人工在線咨詢.美國雙電極膜片鉗報(bào)價(jià)由通道蛋白介導(dǎo)的膜電導(dǎo)構(gòu)成了膜反應(yīng)的主動(dòng)成分,它的電流電壓關(guān)系是非線性的。
膜片鉗技術(shù):從一小片膜(約幾平方微米)上獲取電子信息的技術(shù),即保持跨膜電壓恒壓箝位的技術(shù),從而測(cè)量通過膜的離子電流。通過研究離子通道中的離子流動(dòng),可以了解離子輸運(yùn)、信號(hào)傳遞等信息?;驹?利用負(fù)反饋電子電路,將前排微電極吸附的細(xì)胞膜電位固定在一定水平,動(dòng)態(tài)或靜態(tài)觀察通過通道的微小離子電流,從而研究其功能。一種研究離子通道的電生理技術(shù)是施加負(fù)壓,使玻璃微電極前沿(開口直徑約1μm)與細(xì)胞膜緊密接觸,形成高阻抗密封,可以準(zhǔn)確記錄離子通道的微小電流??芍苽涑扇N單通道記錄模式:細(xì)胞貼附、內(nèi)面向外、外面向內(nèi),以及另一種多通道全細(xì)胞記錄模式。膜片鉗技術(shù)實(shí)現(xiàn)了小膜的隔離和高阻密封的形成。由于高阻密封,背景噪聲水平降低,記錄頻帶范圍相對(duì)變寬,分辨率提高。此外,它還具有良好的機(jī)械穩(wěn)定性和化學(xué)絕緣性。小膜隔離使得研究單個(gè)離子通道成為可能。
離子通道結(jié)構(gòu)研究∶目前,絕大多數(shù)離子通道的一級(jí)結(jié)構(gòu)得到了闡明但根本的還是要搞清楚各種離子通道的三維結(jié)構(gòu),在這方面,美國的二位科學(xué)家彼得阿格雷和羅德里克麥金農(nóng)做出了一些開創(chuàng)性的工作,他們到用X光繞射方法得到了K離子通道的三維結(jié)構(gòu),二位因此獲得2003年諾貝系化學(xué)獎(jiǎng)。有關(guān)離子通道結(jié)構(gòu)不是本PPT的重點(diǎn),可參考楊寶峰的和Hill的 內(nèi)面向外膜片(inside-outpatch)高阻封接形成后,在將微管電極輕輕提起,使其與細(xì)胞分離,電極端形成密封小泡,在空氣中短暫暴露幾秒鐘后,小泡破裂再回到溶液中就得到“內(nèi)面向外”膜片。此時(shí)膜片兩側(cè)的膜電位由固定電位和電壓脈沖控制。浴槽電位是地電位,膜電位等于玻管電位的負(fù)值。如放大器的電流監(jiān)視器輸出是非反向的,則輸出將與膜電流(Im)的負(fù)值相等。外面向外膜片(out-sidepatch)高阻封接形成后,繼續(xù)以負(fù)壓抽吸,膜片破裂再將玻管慢慢地從細(xì)胞表面垂直地提起,斷端游離部分自行融合成脂質(zhì)雙層,此時(shí)高阻封接仍然存在。而膜外側(cè)面接觸浴槽液。這種膜片形式應(yīng)測(cè)膜片電阻,并消除漏電流和電容電流。整個(gè)過程要當(dāng)心是否形成囊泡。如果浴槽保持地電位水平,膜電位即與玻管電位相等。如放大器是非反向的,放大器的輸出將與Im值相等。滔博生物專業(yè)膜片鉗檢測(cè)團(tuán)隊(duì),不是中間商,沒有中介費(fèi),先檢測(cè)后付款.進(jìn)口雙電極膜片鉗參數(shù) 由于膜片鉗檢測(cè)的是PA級(jí)的微電流信號(hào),因此需要特殊的放大器及模數(shù)轉(zhuǎn)換器。日本全自動(dòng)膜片鉗細(xì)胞功能特性 膜片鉗技術(shù)是一種細(xì)胞內(nèi)記錄技術(shù),是研究離子通道活動(dòng)的蕞佳工具,也是應(yīng)用蕞很廣的電生理技術(shù)之一。該技術(shù)通過施加負(fù)壓將微玻管電極(膜片電極或膜片吸管)的前列與細(xì)胞膜緊密接觸,形成GΩ以上的阻抗,使電極開口處的細(xì)胞膜與其周圍膜在電學(xué)上絕緣。被孤立的小膜片面積為μm量級(jí),內(nèi)中只有少數(shù)離子通道。玻璃微電極中含有一根浸入電解溶液中的導(dǎo)線,用于傳導(dǎo)離子。在此基礎(chǔ)上對(duì)該膜片施行電壓鉗位(即保持跨膜電壓恒定),如果單個(gè)離子通道被包含在膜片內(nèi),則可對(duì)此膜片上的離子通道的電流進(jìn)行監(jiān)測(cè)記錄。通過觀測(cè)單個(gè)通道開放和關(guān)閉的電流變化,可直接得到各種離子通道開放的電流幅值分布、開放幾率、開放壽命分布等功能參量,并分析它們與膜電位、離子濃度等之間的關(guān)系。還可把吸管吸附的膜片從細(xì)胞膜上分離出來,以膜的外側(cè)向外或膜的內(nèi)側(cè)向外等方式進(jìn)行實(shí)驗(yàn)研究。這種技術(shù)對(duì)小細(xì)胞的電壓鉗位、改變膜內(nèi)外溶液成分以及施加藥物都很方便。日本全自動(dòng)膜片鉗細(xì)胞功能特性