體積,幾何學(xué)專業(yè)術(shù)語。當(dāng)物體占據(jù)的空間是三維空間時(shí),所占空間的大小叫做該物體的體積。體積的國際單位制是立方米。一維空間物件(如線)及二維空間物件(如正方形)都是零體積的。當(dāng)物體占據(jù)的空間是三維空間時(shí),所占空間的大小叫做該物體的體積。示例1:木箱的體積為3立方米;2:電解水時(shí)放出二體積的氫與一體積的氧...
14. 積分方程
15. 泛函分析
a:線性算子理論,
b:變分法,
c:拓?fù)渚€性空間,
d:希爾伯特空間,
e:函數(shù)空間,
f:巴拿赫空間,
g:算子代數(shù)
h:測度與積分,
i:廣義函數(shù)論,
j:非線性泛函分析,
k:泛函分析其他學(xué)科。
16. 計(jì)算數(shù)學(xué)a:插值法與逼近論,b:常微分方程數(shù)值解,c:偏微分方程數(shù)值解,d:積分方程數(shù)值解,e:數(shù)值代數(shù),f:連續(xù)問題離散化方法,g:隨機(jī)數(shù)值實(shí)驗(yàn),h:誤差分析,i:計(jì)算數(shù)學(xué)其他學(xué)科。
17. 概率論a:幾何概率,b:概率分布,c:極限理論,d:隨機(jī)過程(包括正態(tài)過程與平穩(wěn)過程、點(diǎn)過程等),e:馬爾可夫過程,f:隨機(jī)分析,g:鞅論,h:應(yīng)用概率論(具體應(yīng)用入有關(guān)學(xué)科),i:概率論其他學(xué)科。18. 數(shù)理統(tǒng)計(jì)學(xué)a:抽樣理論(包括抽樣分布、抽樣調(diào)查等 ),b:假設(shè)檢驗(yàn),c:非參數(shù)統(tǒng)計(jì),d:方差分析,e:相關(guān)回歸分析,f:統(tǒng)計(jì)推斷,g:貝葉斯統(tǒng)計(jì)(包括參數(shù)估計(jì)等),h:試驗(yàn)設(shè)計(jì),i:多元分析,j:統(tǒng)計(jì)判決理論,k:時(shí)間序列分析,l:數(shù)理統(tǒng)計(jì)學(xué)其他學(xué)科。 小學(xué)數(shù)學(xué)教學(xué)演示算盤。廣東現(xiàn)貨數(shù)學(xué)教學(xué)教具
勾股定理,是一個(gè)基本的幾何定理,指直角三角形的兩條直角邊的平方和等于斜邊的平方。中國古代稱直角三角形為勾股形,并且直角邊中較小者為勾,另一長直角邊為股,斜邊為弦,所以稱這個(gè)定理為勾股定理,也有人稱商高定理。勾股定理現(xiàn)約有500種證明方法,是數(shù)學(xué)定理中證明方法**多的定理之一。勾股定理是人類早期發(fā)現(xiàn)并證明的重要數(shù)學(xué)定理之一,用代數(shù)思想解決幾何問題的**重要的工具之一,也是數(shù)形結(jié)合的紐帶之一。在中國,周朝時(shí)期的商高提出了“勾三股四弦五”的勾股定理的特例。在西方,**早提出并證明此定理的為公元前6世紀(jì)古希臘的畢達(dá)哥拉斯學(xué)派,他用演繹法證明了直角三角形斜邊平方等于兩直角邊平方之和。廣西數(shù)學(xué)教學(xué)教具制造商小學(xué)平面圖形立體圖形磁性教具。
5、三角形 (s:面積 a:底 h:高)
面積=底×高÷2 s=ah÷2
三角形高=面積 ×2÷底 三角形底=面積 ×2÷高
6、平行四邊形 (s:面積 a:底 h:高)
面積=底×高 s=ah
7、梯形 (s:面積 a:上底 b:下底 h:高)
面積=(上底+下底)×高÷2 s=(a+b)× h÷2
8、圓形 (S:面積 C:周長 л d=直徑 r=半徑)
(1)周長=直徑×л=2×л×半徑 C=лd=2лr
(2)面積=半徑×半徑×л
9、圓柱體 (v:體積 h:高 s:底面積 r:底面半徑 c:底面周長)
(1)側(cè)面積=底面周長×高=ch(2лr或лd) (2)表面積=側(cè)面積+底面積×2
(3)體積=底面積×高 (4)體積=側(cè)面積÷2×半徑
10、圓錐體 (v:體積 h:高 s:底面積 r:底面半徑)
體積=底面積×高÷3
數(shù)量關(guān)系式
1、每份數(shù)×份數(shù)=總數(shù) 總數(shù)÷每份數(shù)=份數(shù) 總數(shù)÷份數(shù)=每份數(shù)
2、1倍數(shù)×倍數(shù)=幾倍數(shù) 幾倍數(shù)÷1倍數(shù)=倍數(shù) 幾倍數(shù)÷倍數(shù)=1倍數(shù)
3、速度×?xí)r間=路程 路程÷速度=時(shí)間 路程÷時(shí)間=速度
4、單價(jià)×數(shù)量=總價(jià) 總價(jià)÷單價(jià)=數(shù)量 總價(jià)÷數(shù)量=單價(jià)
5、工作效率×工作時(shí)間=工作總量 工作總量÷工作效率=工作時(shí)間 工作總量÷工作時(shí)間=工作效率
6、加數(shù)+加數(shù)=和 和-一個(gè)加數(shù)=另一個(gè)加數(shù)
7、被減數(shù)-減數(shù)=差 被減數(shù)-差=減數(shù) 差+減數(shù)=被減數(shù)
8、因數(shù)×因數(shù)=積 積÷一個(gè)因數(shù)=另一個(gè)因數(shù)
9、被除數(shù)÷除數(shù)=商 被除數(shù)÷商=除數(shù) 商×除數(shù)=被除數(shù) 一站式中小學(xué)數(shù)學(xué)教具批發(fā)。
比例的基本性質(zhì)
如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d
合比性質(zhì)
如果a/b=c/d,那么(a±b)/b=(c±d)/d
等比性質(zhì)
如果a/b=c/d=…=m/n(b+d+…+n≠0),
那么(a+c+…+m)/(b+d+…+n)=a/b
相似三角形定理:平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構(gòu)成的三角形與原三角形相似
相似三角形判定定理:
1.兩角對應(yīng)相等,兩三角形相似(ASA)
2.兩邊對應(yīng)成比例且夾角相等,兩三角形相似(SAS)
直角三角形被斜邊上的**成的兩個(gè)直角三角形和原三角形相似
判定定理3:三邊對應(yīng)成比例,兩三角形相似(SSS)
相似直角三角形定理:如果一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)直角三角形的斜邊和一條直角邊對應(yīng)成比例,那么這兩個(gè)直角三角形相似 聯(lián)動型針面教學(xué)模型。安徽數(shù)學(xué)教學(xué)教具報(bào)價(jià)
中小學(xué)數(shù)學(xué)需要用到哪些教具?廣東現(xiàn)貨數(shù)學(xué)教學(xué)教具
全等三角形判定
定理:全等三角形的對應(yīng)邊、對應(yīng)角相等
邊角邊定理(SAS):有兩邊和它們的夾角對應(yīng)相等的兩個(gè)三角形全等
角邊角定理(ASA):有兩角和它們的夾邊對應(yīng)相等的兩個(gè)三角形全等
推論(AAS):有兩角和其中一角的對邊對應(yīng)相等的兩個(gè)三角形全等
邊邊邊定理(SSS):有三邊對應(yīng)相等的兩個(gè)三角形全等
斜邊、直角邊定理(HL):有斜邊和一條直角邊對應(yīng)相等的兩個(gè)直角三角形全等
角的平分線
定理1:在角的平分線上的點(diǎn)到這個(gè)角的兩邊的距離相等
定理2:到一個(gè)角的兩邊的距離相同的點(diǎn),在這個(gè)角的平分線上角的平分線是到角的兩邊距離相等的所有點(diǎn)的**
廣東現(xiàn)貨數(shù)學(xué)教學(xué)教具
體積,幾何學(xué)專業(yè)術(shù)語。當(dāng)物體占據(jù)的空間是三維空間時(shí),所占空間的大小叫做該物體的體積。體積的國際單位制是立方米。一維空間物件(如線)及二維空間物件(如正方形)都是零體積的。當(dāng)物體占據(jù)的空間是三維空間時(shí),所占空間的大小叫做該物體的體積。示例1:木箱的體積為3立方米;2:電解水時(shí)放出二體積的氫與一體積的氧...
清遠(yuǎn)版畫美術(shù)器材顏料
2025-06-23南充美術(shù)器材設(shè)備多少錢
2025-06-23新疆什么是自然科學(xué)教室廠家
2025-06-23杭州小學(xué)物理教學(xué)器材多少錢
2025-06-23常規(guī)自然科學(xué)教室配置方案
2025-06-22成都陶藝美術(shù)器材畫材
2025-06-22成都美術(shù)器材
2025-06-22北京中學(xué)物理教學(xué)器材多少錢
2025-06-22廣州高級物理教學(xué)器材哪家好
2025-06-22