樣品制備,納米力學測試納米纖維的拉伸測試前需要復雜的樣品制備過程,因此FT-NMT03納米力學測試具備微納操作的功能,納米力學測試利用力傳感微鑷或者微力傳感器可以對單根納米纖維進行五個自由度的拾取-放置操作(閉環(huán))。可以使用聚焦離子束(FIB)沉積或電子束誘導沉積(EBID)對樣品進行固定。納米力學測試這種結(jié)合了電-機械測量和納米加工的技術為大多數(shù)納米力學測試應用提供了完美的解決方案。SEM/FIB集成,得益于FT-NMT03納米力學測試系統(tǒng)的緊湊尺寸(71×100×35mm),該系統(tǒng)可以與市面上絕大多數(shù)的全尺寸SEM/FIB結(jié)合使用,在樣品臺上安裝和拆卸該系統(tǒng)十分簡便,只需幾分鐘。此外,由于FT-NMT03納米力學測試的獨特設計(無基座、開放式),納米力學測試體系統(tǒng)可以和電子背向散射衍射儀(EBSD)和掃描透射電子顯微鏡(STEM)技術兼容。納米力學測試可以幫助解決材料在實際使用過程中遇到的損傷和磨損問題。重慶化工納米力學測試方法
納米壓痕技術,納米壓痕技術是一種直接測量材料硬度和彈性模量的方法。該方法通過在納米尺度下施加一個小的壓痕負荷,通過測量壓痕的深度和形狀來推算材料的力學性質(zhì)。納米壓痕技術一般使用壓痕儀進行測試。在進行納米壓痕測試時,樣品通常需要進行前處理,例如制備平整的表面或進行退火處理。測試過程中,將頂端負載在材料表面上,并控制負載的大小和施加時間。然后,通過測量壓痕的深度和直徑來計算材料的硬度和彈性模量。納米壓痕技術普遍應用于納米硬度測試、薄膜力學性質(zhì)研究等領域。重慶化工納米力學測試方法在進行納米力學測試時,需要注意避免外界干擾和噪聲對測試結(jié)果的影響。
納米壓痕技術也稱深度敏感壓痕技術(Depth-Sensing Indentation, DSI),是較簡單的測試材料力學性質(zhì)的方法之一,可以在納米尺度上測量材料的各種力學性質(zhì),如載荷-位移曲線、彈性模量、硬度、斷裂韌性、應變硬化效應、粘彈性或蠕變行為等。納米壓痕理論,納米壓痕試驗中典型的載荷-位移曲線。在加載過程中試樣表面首先發(fā)生的是彈性變形,隨著載荷進一步提高,塑性變形開始出現(xiàn)并逐步增大;卸載過程主要是彈性變形恢復的過程,而塑性變形較終使得樣品表面形成了壓痕。圖中Pmax 為較大載荷,hmax 為較大位移,hf為卸載后的位移,S為卸載曲線初期的斜率。納米硬度的計算仍采用傳統(tǒng)的硬度公式H =P/A。式中,H 為硬度 (GPa);P 為較大載荷 ( μ N),即上文中的 P max ;A 為壓痕面積的投影(nm2 )。
納米科學與技術是近二十年來發(fā)展起來的一門前沿和交叉學科,納米力學作為其中的一個分支,對其他分支學科如納米材料學、物理學、生物醫(yī)學等都有著重要的支撐作用。下面簡要介紹一下目前應用較普遍的兩類微納米力學測試方法:納米壓痕方法和基于原子力顯微鏡的納米力學測試方法。納米壓痕是20 世紀90 年代初期快速發(fā)展起來的一種微納米力學測試方法,是研究微納米尺度材料力學性能的重要方法之一,在科研和工業(yè)領域都有著普遍的應用。納米壓痕的壓入深度在一般在納米量級,遠小于傳統(tǒng)壓痕的微米或毫米量級。限于光學顯微鏡的分辨率,無法直接對納米壓痕的尺寸進行精確測量。納米力學測試技術的發(fā)展推動了納米材料和納米器件的性能優(yōu)化。
當前納米力學主要應用的測試手段是納米壓痕和基于原子力顯微鏡(AFM) 的力—距離曲線方法,實際上還有另外一種基于AFM 的納米力學測試方法——掃描探針聲學顯微術(atomic force acoustic microscopy,AFAM)。AFAM具有分辨率高、成像速度快、相對誤差低、力學性能敏感度高等優(yōu)點。然而,目前AFAM 的應用還不夠普遍,相關領域的學者對AFAM 了解和使用的還不多。為此,我們在前期研究的基礎上,經(jīng)過整理和凝練,形成了這部專著,目的是推動AFAM這種新型納米力學測量方法在國內(nèi)的普遍應用。納米力學測試是一種用于研究納米尺度材料力學性質(zhì)的實驗方法。云南高精度納米力學測試
跨學科合作,推動納米力學測試技術不斷創(chuàng)新,滿足多領域需求。重慶化工納米力學測試方法
對納米材料和納米器件的研究和發(fā)展來說,表征和檢測起著至關重要的作用。由于人們對納米材料和器件的許多基本特征、結(jié)構和相互作用了解得還不很充分,使其在設計和制造中存在許多的盲目性,現(xiàn)有的測量表征技術就存在著許多問題。此外,由于納米材料和器件的特征長度很小,測量時產(chǎn)生很大擾動,以至產(chǎn)生的信息并不能完全表示其本身特性。這些都是限制納米測量技術通用化和應用化的瓶頸,因此,納米尺度下的測量無論是在理論上,還是在技術和設備上都需要深入研究和發(fā)展。重慶化工納米力學測試方法