掃描探針聲學(xué)顯微術(shù)一般適用于模量范圍在1~300 GPa 的材料。對于更軟的材料,在測試過程中接觸力有可能會對樣品造成損害?;谳p敲模式的原子力顯微鏡多頻成像技術(shù)是近年來發(fā)展的一項納米力學(xué)測試方法。通過同時激勵和檢測探針多個頻率的響應(yīng)或探針振動的兩階(或多階) 模態(tài)或探針振動的基頻和高次諧波成分等,可以實現(xiàn)對被測樣品形貌、彈性等性質(zhì)的快速測量。只要是涉及探針兩個及兩個以上頻率成分的激勵和檢測,均可以歸為多頻成像技術(shù)。由于輕敲模式下針尖施加的作用力遠小于接觸狀態(tài)下的作用力,因此基于輕敲模式的多頻成像技術(shù)適合于軟物質(zhì)力學(xué)性能的測量。在納米力學(xué)測試中,常用的儀器包括原子力顯微鏡、納米硬度儀等設(shè)備。湖南空心納米力學(xué)測試實驗室
較大壓痕深度1.5 μ m時的試驗結(jié)果,其中納米硬度平均值為0.46GPa,而用傳統(tǒng)硬度計算方法得到的硬度平均值為0.580GPa,這說明傳統(tǒng)硬度計算方法在微納米硬度測量時誤差較大,其原因就是在微納米硬度測量時,材料變形的彈性恢復(fù)造成殘余壓痕面積較小,傳統(tǒng)方法使得計算結(jié)果產(chǎn)生了偏差,不能正確反映材料的硬度值。圖片通過對不同載荷下的納米硬度測量值進行比較發(fā)現(xiàn),單晶鋁的納米硬度值并不是恒定的, 而是在一定范圍內(nèi)隨著載荷(壓頭位移)的降低而逐漸增大,也就是存在壓痕尺寸效應(yīng)現(xiàn)象。圖3反映了納米硬度隨壓痕深度的變化。較大壓痕深度1μm時單晶鋁彈性模量與壓痕深度的關(guān)系。此外,納米硬度儀還可以輸出接觸剛、實時載荷等隨壓頭位移的變化曲線,試驗者可以從中獲得豐富的信息。廣東國產(chǎn)納米力學(xué)測試方法納米力學(xué)測試還可以用于研究納米結(jié)構(gòu)材料的斷裂行為和變形機制。
微納米材料力學(xué)性能測試系統(tǒng)可移動范圍:250mm x 150mm;步長分辨率:50nm;Encoder 分辨率:500nm;較大移動速率:30mm/S;Z stage??梢苿臃秶?0mm;步長分辨率:3nm;較大移動速率:1.9mm/S。原位成像掃描范圍。XY 方向:60μm x 60μm;Z 方向:4μm;成像分辨率:256 x 256 像素點;掃描速率:3Hz;壓頭原位的位置控制精度:<+/-10nm;較大樣品尺寸:150mm- 200mm。納米壓痕試驗:測試硬度及彈性模量(包括隨著連續(xù)壓入深度的變化獲得硬度和彈性模量的分布)以及斷裂韌性、蠕變、應(yīng)力釋放等。 納米劃痕試驗:獲得摩擦系數(shù)、臨界載荷、膜基結(jié)合性質(zhì)。納米摩擦磨損試驗 :評價抗磨損能力。在壓痕、劃痕、磨損前后的SPM原位掃描探針成像: 獲得微區(qū)的形貌組織結(jié)構(gòu)。
FT-NMT03納米力學(xué)測試系統(tǒng)可以配合SEM/FIB原位精確直接地測量納米纖維的力學(xué)特性。微力傳感器加載微力,納米力學(xué)測試結(jié)合高分辨位置編碼器可以對納米纖維進行拉伸、循環(huán)、蠕變、斷裂等形變測試。力-形變(應(yīng)力-應(yīng)變)曲線可以定量的表征納米纖維的材料特性。此外,納米力學(xué)測試結(jié)合樣品架電連接,可以定量表征電-機械性質(zhì)。位置穩(wěn)定性,納米力學(xué)測試對于納米纖維的精確拉伸測試,納米力學(xué)測試系統(tǒng)的位移是測試不穩(wěn)定性的主要來源。圖2展示了FT-NMT03納米力學(xué)測試系統(tǒng)位移的統(tǒng)計學(xué)評價,從中可以找到每一個測試間隔內(nèi)位移導(dǎo)致的不確定性,例如100s內(nèi)為450pm,意思是65%(或95%)的概率,納米力學(xué)測試系統(tǒng)在100s的時間間隔內(nèi)的位移穩(wěn)定性小于±450pm(或±900pm)。納米力學(xué)測試可以幫助研究人員了解納米材料的力學(xué)性能與結(jié)構(gòu)之間的關(guān)系,為納米材料的設(shè)計和優(yōu)化提供指導(dǎo)。
借助原子力顯微鏡(AFM)的納米力學(xué)測試法,利用原子力顯微鏡探針的納米操縱能力對一維納米材料施加彎曲或拉伸載荷。施加彎曲載荷時,原子力顯微鏡探針作用在一維納米懸臂梁結(jié)構(gòu)高自山端國雙固支結(jié)構(gòu)的中心位置,彎曲撓度和載荷通過原子力顯微鏡探針懸曾梁的位移和懸臂梁的剛度獲取,依據(jù)連續(xù)力學(xué)理論,由試樣的載荷一撓度曲線獲得其彈性模量、強度和韌性等力學(xué)性能參數(shù)。這種方法加載機理簡單,相對拉伸法容易操作,缺點是原子力顯微鏡探針的尺寸與被測納米試樣相比較大,撓度較大時探針的滑動以及試樣中心位置的對準(zhǔn)精度嚴(yán)重影響測試精度3、借助微機電系統(tǒng)(MEMS)技術(shù)的片上納米力學(xué)測試法基于 MEMS 的片上納米力學(xué)測試法采用 MEMS 微加工工藝將微驅(qū)動單元、微傳感單元或試樣集成在同一芯片上,通過微驅(qū)動單元對試樣施加載荷,微位移與微力檢測單元檢測試樣變形與加載力,進面獲取試樣的力學(xué)性能。納米力學(xué)測試可以應(yīng)用于納米材料的質(zhì)量控制和品質(zhì)檢測,確保產(chǎn)品符合規(guī)定的力學(xué)性能要求。廣東新能源納米力學(xué)測試模塊
在進行納米力學(xué)測試時,需要注意避免外界干擾和噪聲對測試結(jié)果的影響。湖南空心納米力學(xué)測試實驗室
納米劃痕法,納米劃痕硬度計主要是通過測量壓頭在法向和切向上的載荷和位移的連續(xù)變化過程,進而研究材料的摩擦性能、塑性性能和斷裂性能的。納米劃痕儀器的設(shè)計主要有兩種方案 納米劃痕計和壓痕計,合二為一即劃痕計的法向力和壓痕深度由高分辨率的壓痕計提供,同時記錄勻速移動的試樣臺的位移,使壓頭沿試樣表面進行刻劃,切向力由壓桿上的兩個相互垂直的力傳感器測量納米劃痕硬度計和壓痕計相互單獨。納米劃痕硬度計,不只可以研究材料的摩擦磨損行為,還普遍應(yīng)用于薄膜的粘著失效和黏彈行為。對刻劃材料來說,不只載荷和壓入深度是重要的參數(shù),而且殘余劃痕的深度、寬度、凸起的高度在研究接觸壓力和實際摩擦也是十分重要的。目前,該類儀器已普遍應(yīng)用于各種電子薄膜、汽車噴漆、膠卷、光學(xué)鏡 頭、磁盤、化妝品(指甲油和口紅)等的質(zhì)量檢測。湖南空心納米力學(xué)測試實驗室