深度學(xué)習(xí)是機(jī)器學(xué)習(xí)的一個(gè)分支,只在近十年內(nèi)才得到廣泛的關(guān)注與發(fā)展。它與機(jī)器學(xué)習(xí)不同的,它模擬我們?nèi)祟愖约喝プR(shí)別人臉的思路。比如,神經(jīng)學(xué)家發(fā)現(xiàn)了我們?nèi)祟愒谡J(rèn)識(shí)一個(gè)東西、觀察一個(gè)東西的時(shí)候,邊緣檢測(cè)類的神經(jīng)元先反應(yīng)比較大,也就是說我們看物體的時(shí)候永遠(yuǎn)都是先觀察到邊緣。就這樣,經(jīng)過科學(xué)家大量的觀察與實(shí)驗(yàn),總結(jié)出人眼識(shí)別的模式是基于特殊層級(jí)的抓取,從一個(gè)簡(jiǎn)單的層級(jí)到一個(gè)復(fù)雜的層級(jí),這個(gè)層級(jí)的轉(zhuǎn)變是有一個(gè)抽象迭代的過程的。深度學(xué)習(xí)就模擬了我們?nèi)祟惾ビ^測(cè)物體這樣一種方式,首先拿到互聯(lián)網(wǎng)上海量的數(shù)據(jù),拿到以后才有海量樣本,把海量樣本抓取過來做訓(xùn)練,抓取到重要特征,建立一個(gè)網(wǎng)絡(luò),因?yàn)樯疃葘W(xué)習(xí)就是建立一個(gè)多層的神經(jīng)網(wǎng)絡(luò),肯定有很多層。有些簡(jiǎn)單的算法可能只有四五層,但是有些復(fù)雜的,像剛才講的谷歌的,里面有一百多層。當(dāng)然這其中有的層會(huì)去做一些數(shù)學(xué)計(jì)算,有的層會(huì)做圖像預(yù)算,一般隨著層級(jí)往下,特征會(huì)越來越抽象。SpeedDP支持Yolo系列算法。寧夏快速圖像標(biāo)注技術(shù)

識(shí)別算法的性能提升依靠大量的圖像標(biāo)注,傳統(tǒng)模式下,需要人工對(duì)同一識(shí)別目標(biāo)的數(shù)據(jù)集進(jìn)行一步一步手動(dòng)拉框,但是這個(gè)過程的痛苦只有做過的人才知道。越多素材的數(shù)據(jù)集對(duì)于算法的提升越有幫助,常規(guī)情況下,一個(gè)20秒時(shí)長(zhǎng)30幀的視頻就多達(dá)兩三百?gòu)埉嬅嫘枰獦?biāo)注,如果視頻時(shí)長(zhǎng)或者視頻的幀速率增加,需要標(biāo)注的幀畫面將會(huì)更多。小編曾試過標(biāo)注一個(gè)時(shí)長(zhǎng)為1分30秒幀速率為60的視頻,需要標(biāo)注的畫面竟然多達(dá)5000多張,當(dāng)我標(biāo)注到500張的時(shí)候,整個(gè)人都已經(jīng)麻木,并且出現(xiàn)情緒波動(dòng),望著剩下的4500多張待標(biāo)注畫面,看著都頭皮發(fā)麻,怎么都不想繼續(xù)了。寧夏快速圖像標(biāo)注技術(shù)識(shí)別檢測(cè)算法的性能提升依靠大量的圖像標(biāo)注。
部署機(jī)器學(xué)習(xí)模型,也稱為模型部署,簡(jiǎn)單來說就是將機(jī)器學(xué)習(xí)模型集成到現(xiàn)有的生產(chǎn)環(huán)境中,在該環(huán)境中,模型可以接受輸入并返回輸出。部署模型的目的是讓其他人(無論是用戶、管理人員還是其他系統(tǒng))可以使用訓(xùn)練有素的機(jī)器學(xué)習(xí)模型進(jìn)行預(yù)測(cè)。模型部署與機(jī)器學(xué)習(xí)系統(tǒng)架構(gòu)密切相關(guān),機(jī)器學(xué)習(xí)系統(tǒng)架構(gòu)是指系統(tǒng)內(nèi)軟件組件的排列和交互,以實(shí)現(xiàn)預(yù)定義的目標(biāo)。成都慧視推出的AI自動(dòng)圖像標(biāo)注軟件SpeedDP也是這樣,通過正確的模型部署后方能進(jìn)行正確的AI模型訓(xùn)練,讓AI更加智能。
IDEA研究院團(tuán)隊(duì)推出了GroundingDINO?1.5,它能夠?qū)崿F(xiàn)端側(cè)實(shí)時(shí)識(shí)別。在圖像和文本的語(yǔ)義理解上表現(xiàn)出色,能夠快速、準(zhǔn)確地根據(jù)語(yǔ)言提示檢測(cè)和識(shí)別圖像中的目標(biāo)對(duì)象。作為當(dāng)前性能比較好的開集檢測(cè)模型,GroundingDINO?1.5Pro可以幫助構(gòu)建海量的具有物體級(jí)別語(yǔ)義信息的多模態(tài)數(shù)據(jù),從而有效地助力多模態(tài)大模型的訓(xùn)練。它可以將長(zhǎng)文本描述中的短語(yǔ)與圖像中的具體對(duì)象或場(chǎng)景精確匹配,以增強(qiáng)AI對(duì)視覺內(nèi)容和文本之間關(guān)系的理解。目前,成都慧視利用AI圖像處理板和YOLO算法來實(shí)現(xiàn)對(duì)物體的實(shí)時(shí)監(jiān)測(cè),其中,開發(fā)的Viztra-HE030圖像處理板采用了瑞芯微全新一代高性能芯片RK3588,擁有四大四小八核處理器,算力水平能夠達(dá)到6.0TOPS,在我司定制多種視頻接口后,可實(shí)時(shí)對(duì)目標(biāo)進(jìn)行識(shí)別或者人為的的鎖定,同時(shí)可以根據(jù)輸出目標(biāo)的靶量信息,對(duì)目標(biāo)進(jìn)行實(shí)時(shí)跟蹤。SpeedDP提供從數(shù)據(jù)標(biāo)注、模型訓(xùn)練、測(cè)試驗(yàn)證到RockChip嵌入式硬件平臺(tái)模型部署的可視化AI開發(fā)功能。

多邊形標(biāo)注能夠能夠幫助我們標(biāo)注一些規(guī)則復(fù)雜的物體,如動(dòng)物、人、車、建筑物等,與矩形標(biāo)注框等方法相比,多邊形標(biāo)注更能精確展示被標(biāo)注物體的形狀、大小以及實(shí)時(shí)形態(tài),通過大量的多邊形標(biāo)注工作,能夠更好的幫助我們提高算法模型的準(zhǔn)確性和魯棒性。傳統(tǒng)的多邊形標(biāo)注方法中,標(biāo)注者需要在物體的邊緣上依次單擊鼠標(biāo)或使用繪圖工具,將點(diǎn)連接起來形成一個(gè)封閉的多邊形。標(biāo)注的難度取決于被標(biāo)注物體的復(fù)雜程度,相較于矩形框標(biāo)注更加費(fèi)時(shí)費(fèi)力,如果遇到大量待標(biāo)注目標(biāo),則極大地影響工作效率。SpeedDP能夠減少機(jī)械式的圖像標(biāo)注工作。寧夏高效圖像標(biāo)注有哪些
AI算法訓(xùn)練平臺(tái)SpeedDP。寧夏快速圖像標(biāo)注技術(shù)
鳳凰衛(wèi)視在“數(shù)聚未來——鳳凰大模型數(shù)據(jù)研討沙龍”上正式推出“鳳凰智媒AI數(shù)據(jù)業(yè)務(wù)”,發(fā)布首批“中文訪談對(duì)話數(shù)據(jù)集”和“正向價(jià)值對(duì)齊數(shù)據(jù)集”,還將推出以數(shù)據(jù)為中心的一站式AI訓(xùn)練平臺(tái),計(jì)劃于近期開放內(nèi)測(cè)。鳳凰衛(wèi)視執(zhí)行副總裁兼運(yùn)營(yíng)總裁李奇在致辭中表示,鳳凰衛(wèi)視作為一個(gè)立足香港、背靠?jī)?nèi)地、面向全球發(fā)展的國(guó)際媒體,也將是人工智能時(shí)代的積極參與者,期望發(fā)揮鳳凰的媒體平臺(tái)優(yōu)勢(shì),為產(chǎn)業(yè)界建立一個(gè)共建共享的數(shù)據(jù)平臺(tái),共同推進(jìn)人工智能的快速發(fā)展。寧夏快速圖像標(biāo)注技術(shù)