1、大腸桿菌對溶氧的需求,大腸桿菌是一種兼性厭氧菌,在有氧條件下可通過有氧呼吸高效代謝。在高密度發(fā)酵過程中,充足的氧氣供應至關重要,通常需要將溶解氧(DO)水平維持在20%-30%。若DO低于此范圍,菌體可能轉向厭氧代謝,通過“Crabtree效應”積累乙酸,進而抑制蛋白質合成和菌體生長,影響發(fā)酵效率。2、DO-STAT控制策略,DO-STAT(溶氧關聯補料控制)是一種基于實時溶氧反饋的智能補料技術,通過動態(tài)調節(jié)補料速率使耗氧與供氧達到平衡。該技術廣泛應用于工業(yè)微生物發(fā)酵領域,尤其在大腸桿菌和酵母菌的高密度培養(yǎng)中表現優(yōu)異,是重組蛋白、疫苗及酶制劑生產的關鍵工藝之一。溶氧水平的精細控制直接決定了菌體生長速率和產物合成效率。3、溶氧監(jiān)測,目前發(fā)酵過程中的溶氧在線監(jiān)測主要依賴兩類傳感器,極譜型溶氧電極:傳統(tǒng)電化學傳感器,響應快,需定期維護。光學溶氧傳感器:基于熒光淬滅原理,穩(wěn)定性高,維護需求低。4、溶氧分段控制根據發(fā)酵階段動態(tài)調整DO水平,可大幅度提升產物產量,生長期:維持DO20%-30%,配合高攪拌速率(500-800rpm),促進菌體快速增殖。誘導期:降低DO至10%-20%,減少乙酸積累,同時促進外源蛋白表達(如IPTG誘導系統(tǒng))。 熒光法溶氧電極具有較快的響應時間,能夠迅速反映水質變化,滿足實時監(jiān)測的需求。不銹鋼溶解氧電極哪家好
熒光法溶氧電極不需要極化時間的原因在于其工作原理的獨特性。傳統(tǒng)電極法測溶解氧時,電極在使用前通常需經過極化過程,以確保電極的穩(wěn)定性和準確性。然而,熒光法溶氧電極并不依賴電極的極化反應,而是采用熒光猝熄原理來測量溶解氧的濃度。具體而言,熒光法溶氧電極通過藍光照射熒光物質,使其激發(fā)并發(fā)出紅光。由于氧分子能夠帶走熒光物質激發(fā)過程中的能量(即猝熄效應),因此激發(fā)出的紅光的時間和強度與氧分子的濃度成反比。通過測量這一紅光與參比光的相位差,并與內部標定值對比,即可計算出溶解氧的濃度。由于熒光法溶氧電極在測量過程中不依賴電極的極化,因此無需極化時間,從而提高了測量效率。這使得熒光法溶氧電極在需要快速、實時獲取溶解氧濃度的場景中更具優(yōu)勢,如污水處理、工業(yè)廢水處理等領域。此外,無需極化時間還減少了用戶的使用前準備時間,提升了整體工作效率和用戶體驗。武漢溶解氧電極供應熒光法溶氧電極的測量結果之所以更加穩(wěn)定,且不易受到傳統(tǒng)測量中常見因素的干擾。
溶氧電極在植物工廠中的應用也逐漸受到關注。在植物工廠中,通過精確控制光照、溫度、濕度和二氧化碳濃度等環(huán)境因素,實現植物的高效生長。而溶解氧作為植物根系生長和呼吸的重要因素,同樣需要精細調控。溶氧電極可用于監(jiān)測植物工廠營養(yǎng)液中的溶解氧濃度,根據植物的生長階段和需求,調整營養(yǎng)液的通氣量和循環(huán)方式,為植物提供適宜的溶氧環(huán)境,促進植物的健康生長,提高植物工廠的生產效率和產品質量。微基智慧科技(江蘇)有限公司
溶氧電極在醫(yī)學研究中的細胞代謝研究方面發(fā)揮著重要作用。在體外細胞培養(yǎng)實驗中,不同類型的細胞對培養(yǎng)環(huán)境中的溶解氧濃度需求各異。例如,腫瘤細胞在低氧環(huán)境下可能具有更強的增殖和轉移能力,而正常細胞則需要相對穩(wěn)定且適宜的氧濃度。溶氧電極能夠實時監(jiān)測細胞培養(yǎng)體系中的溶解氧變化,科研人員據此調整培養(yǎng)條件,深入研究細胞在不同氧濃度下的代謝機制,為疾病的發(fā)病機制研究和藥物研發(fā)提供關鍵數據支持。微基智慧科技(江蘇)有限公司通過溶解氧電極反饋控制,可實現發(fā)酵過程的閉環(huán)自動化,減少人為操作誤差。
熒光法溶氧電極的測量結果之所以更加穩(wěn)定,主要得益于其獨特的測量原理與技術優(yōu)勢。首先,熒光法基于熒光淬滅原理,通過藍光激發(fā)熒光物質產生紅光,而氧分子能夠淬滅這一激發(fā)過程,從而通過測量激發(fā)紅光的時間與強度來反推氧分子的濃度。這一過程中,不涉及電極污染、電解液耗盡等電化學方法常見的問題,從根本上避免了因電極狀態(tài)變化導致的測量誤差。其次,熒光法測量無需消耗水中的溶解氧,也不會因測量過程而改變水體環(huán)境,從而保證了測量結果的客觀性和準確性。此外,熒光法溶氧電極具有極強的抗干擾能力,不受pH值、硫化物、重金屬等干擾物質的影響,即使在復雜多變的水質環(huán)境中也能保持穩(wěn)定的測量性能。再者,熒光法溶氧電極的維護成本較低,無需頻繁清洗探頭,只需定期擦拭熒光帽即可,減少了因維護不當導致的測量誤差。同時,熒光法測量響應速度快,能夠實時反映水體的溶解氧含量,為水質監(jiān)測和環(huán)境保護提供了及時、準確的數據支持。熒光法溶氧電極的測量結果更加穩(wěn)定,主要得益于其獨特的測量原理、不消耗溶解氧的測量方式、強抗干擾能力以及低維護成本等優(yōu)勢。溶氧電極在污水處理中具有重要的輔助作用,是實現污水處理工藝優(yōu)化和微生物活性提升的關鍵手段之一。安徽生物發(fā)酵用溶氧電極
極譜法溶氧電極的穩(wěn)定性強,即使在惡劣環(huán)境中也能保持可靠的測量性能。不銹鋼溶解氧電極哪家好
溶氧電極——溶氧對生物發(fā)酵產類胡蘿卜素的影響及調控,溶解氧(DissolvedOxygen,DO)是生物發(fā)酵過程中影響類胡蘿卜素合成的關鍵因素之一,其濃度和調控直接影響微生物的代謝途徑、細胞生長及次級代謝產物的積累。以下是溶解氧對類胡蘿卜素發(fā)酵的影響及調控策略的詳細分析:溶解氧對類胡蘿卜素合成的影響,1.直接代謝調控:(1)好氧需求:類胡蘿卜素合成菌(如紅酵母、黏紅酵母、三孢布拉霉等)多為好氧微生物,其合成途徑依賴氧分子作為底物(如β-胡蘿卜素合成需氧依賴的環(huán)化酶)。(2)氧化應激響應:適度氧脅迫可促進抗氧化防御機制,促進類胡蘿卜素(如β-胡蘿卜素、蝦青素)積累,因其具有qingli活性氧(ROS)的功能。但過量ROS會抑制細胞生長。2.能量與還原力平衡:(1)高DO促進TCA循環(huán)和氧化磷酸化,生成更多ATP和NADPH,為類胡蘿卜素合成提供能量和還原力(如NADPH是類胡蘿卜素合成關鍵輔因子)(2)但過高的DO可能導致碳源過度消耗于菌體生長,而非產物合成。3、關鍵酶活性,(1)限氧條件下,MVA途徑(甲羥戊酸途徑)關鍵酶(如HMG-CoA還原酶)活性可能受抑制,減少類胡蘿卜素前體(IPP/DMAPP)供應。(2)如三孢布拉霉中,DO>30%飽和度時胡蘿卜素合成酶基因。 不銹鋼溶解氧電極哪家好
雙孢蘑菇、短小芽孢桿菌,在生物發(fā)酵產酶過程中對溶氧電極水平的具體需求和差異說明。1、雙孢蘑菇(Agaricus bisporus MJ-0811)在發(fā)酵過程中,攪拌轉速和通氣量對菌體生長和胞外多糖分泌具有較大影響。研究表明,較佳的培養(yǎng)條件為溫度 25℃、攪拌轉速 160r/min、通氣量 0.9vvm。在此條件下,培養(yǎng) 5d,菌體生物量至高達 20.81g/L,胞外多糖產量峰值達 3.75g/L。2、短小芽孢桿菌在生產果膠裂解酶時,研究了初始 pH、碳源和氮源、通氣、鹽和磷酸鹽對微生物生長、果膠裂解酶活性和釋放總蛋白的影響。確定了比較好的果膠和硫酸銨濃度分別為 1%(w/v)和 0.05%(w...