雙光子顯微鏡工作原理是將超快的紅外激光脈沖傳輸?shù)綐悠分?,在樣品中與組織或熒光標(biāo)記相互作用,這些組織或熒光標(biāo)記發(fā)出用于創(chuàng)建圖像的信號。雙光子顯微鏡被多用于生物學(xué)研究,因為它能夠產(chǎn)生高分辨率的3-D圖像,深度達(dá)1毫米。然而,這些優(yōu)點帶來了有限的成像速度,因為微光條件需要逐點圖像采集和重建的點檢測器。為了加快成像速度,科學(xué)家之前開發(fā)了一種多焦點激光照明方法,該方法使用數(shù)字微鏡設(shè)備(DMD),這是一種通常用于投影儀的低成本光掃描儀。此前人們認(rèn)為這些DMD不能與超快激光一起工作。然而現(xiàn)在解決了這個問題,這使得DMD在超快激光應(yīng)用中得以應(yīng)用,這些應(yīng)用包括光束整形、脈沖整形、快速掃描和雙光子成像。DMD在樣品內(nèi)隨機選擇的位置上產(chǎn)生5到30點聚焦激光。顯微鏡產(chǎn)品正拉動市場需求,多光子顯微鏡市場發(fā)展?jié)摿薮蟆C绹喙庾语@微鏡實驗
某種物質(zhì)能產(chǎn)生熒光,首要條件是分子必須具有吸收的結(jié)構(gòu),即生色團(分子中具有吸收特征頻率的光能的基團)。其次,該物質(zhì)必須具有一定的量子產(chǎn)率和適宣的環(huán)境。我們把分子中發(fā)射熒光的基團稱為熒光團。熒光團一定是生色團,但生色團不一定是熒光團。因為,如果生色團的量子產(chǎn)率等于零,就不能發(fā)射出熒光,處于激發(fā)態(tài)的分子,可以由許多方式(如熱,碰撞)把能量釋放出來,發(fā)射熒光只是其中的一種方式。此外,一種物質(zhì)吸收光的能力及量子產(chǎn)率又與物質(zhì)所處的環(huán)境密切相關(guān)。美國布魯克多光子顯微鏡代理多光子顯微鏡,提高醫(yī)學(xué)病理診斷的準(zhǔn)確性和效率。
快速光柵掃描有多種實現(xiàn)方式,使用振鏡進行快速2D掃描,將振鏡和可調(diào)電動透鏡結(jié)合在一起進行快速3D掃描,但可調(diào)電動透鏡由于機械慣性的限制在軸向無法快速進行焦點切換,影響成像速度,現(xiàn)可使用空間光調(diào)制器(SLM)代替。遠(yuǎn)程聚焦也是一種實現(xiàn)3D成像的手段,如圖2所示。在LSU模塊中,掃描振鏡進行橫向掃描,ASU模塊包括物鏡L1和反射鏡M,通過調(diào)控M的位置實現(xiàn)軸向掃描。該技術(shù)不僅可以校正主物鏡L2引入的光學(xué)像差,還可以進行快速的軸向掃描。想要獲得更多神經(jīng)元成像,可以通過調(diào)整顯微鏡的物鏡設(shè)計來擴大FOV,但是具有大NA和大FOV的物鏡通常重量較大,無法快速移動以進行快速軸向掃描,因此大型FOV系統(tǒng)依賴于遠(yuǎn)程聚焦、SLM和可調(diào)電動透鏡。
雙光子熒光顯微成像主要有以下優(yōu)點∶a.光損傷小∶雙光子熒光顯微鏡使用可見光或近紅外光作為激發(fā)光,對細(xì)胞和組織的光損傷很小,適合于長時間的研究;b.穿透能力強∶相對于紫外光,可見光或近紅外光具有很強的穿透性,可以對生物樣品進行深層次的研究;c.高分辨率∶由于雙光子吸收截面很小P,只有在焦平面很小的區(qū)域內(nèi)可以激發(fā)出熒光,雙光子吸收局限于焦點處的體積約為λ范圍內(nèi);d.漂白區(qū)域很小,焦點以外不發(fā)生漂白現(xiàn)象。e.熒光收集率高。與共聚焦成像相比,雙光子成像不需要光學(xué)濾波器,提高了熒光收集率。收集效率提高直接導(dǎo)致圖像對比度提高。f.對探測光路的要求低。由于激發(fā)光與發(fā)射熒光的波長差值加大以及自發(fā)的三維濾波效果,多光子顯微鏡對光路收集系統(tǒng)的要求比單光子共焦顯微鏡低得多,光學(xué)系統(tǒng)相對簡單。g.適合多標(biāo)記復(fù)合測量。許多染料熒光探針的多光子激發(fā)光譜要比單光子激發(fā)譜寬闊,這樣,可以利用單一波長的激發(fā)光同時激發(fā)多種染料,從而得到同一生命現(xiàn)象中的不同信息,便于相互對照、補充。OCT可以用于損傷修復(fù)監(jiān)測。Yeh等用OCT、多光子顯微鏡。
2020年,TonmoyChakraborty等人提出了一種加快2PM軸向掃描速度的方法[2]。在光學(xué)顯微鏡中,物鏡或樣品的緩慢軸向掃描速度限制了體積成像的速度。近年來,通過使用遠(yuǎn)程聚焦技術(shù)或電可調(diào)諧透鏡(ETL)已經(jīng)實現(xiàn)了快速軸向掃描;但是,遠(yuǎn)程聚焦中反射鏡的機械驅(qū)動會限制軸向掃描速度,ETL會引入球面像差和更高階像差,從而無法進行高分辨率成像。為了克服這些局限性,該組引入了一種新穎的光學(xué)設(shè)計,能將橫向掃描轉(zhuǎn)換為可用于高分辨率成像的無球差的軸向掃描。該設(shè)計有兩種實現(xiàn)方式,第一種能夠執(zhí)行離散的軸向掃描,另一種能夠進行連續(xù)的軸向掃描。具體裝置如圖3a所示,由兩個垂直臂組成,每個臂中都有一個4F望遠(yuǎn)鏡和一個物鏡。遠(yuǎn)程聚焦臂包含一個檢流掃描鏡(GSM)和一個空氣物鏡(OBJ1),另一個臂(稱為照明臂)由一個水浸物鏡(OBJ2)構(gòu)成。將這兩個臂對齊,以使GSM與兩個物鏡的后焦平面共軛。準(zhǔn)直的激光束被偏振分束器反射到遠(yuǎn)程聚焦臂中,GSM對其進行掃描,進而使得OBJ1產(chǎn)生的激光焦點進行橫向掃描。 多光子激光掃描顯微鏡更能解決生物組織中深層物質(zhì)的層析成像問題, 擴大了應(yīng)用范圍。美國共聚焦多光子顯微鏡Ultima 2P Plus
融合先進激光技術(shù),多光子顯微鏡實現(xiàn)高速、高清晰度成像。美國多光子顯微鏡實驗
多光子顯微鏡因擁有較深的成像深度,和較高的對比度在生物成像中有著重要的意義,但是它通常需要較高的功率。結(jié)合時間上展開的超短脈沖可以實現(xiàn)超快的掃描速度和較深的成像深度,但是其本身所利用的近紅外波段的光會導(dǎo)致分辨率較低。清華大學(xué)陳宏偉教授和北京大學(xué)席鵬研究員合作研究,結(jié)合了結(jié)構(gòu)光成像和上轉(zhuǎn)化粒子,開發(fā)了一種基于多光子上轉(zhuǎn)化材料和時間編碼結(jié)構(gòu)光顯微鏡的高速超分辨成像系統(tǒng)(MUTE-SIM)。它可以實現(xiàn)50MHz的超高的掃描速度,并突破了衍射極限,實現(xiàn)了超分辨成像。相較于普通的熒光顯微鏡,該顯微鏡提升了,并且只需要較低的激發(fā)功率。這種超快、低功率、多光子的超分辨技術(shù),在分辨率高的生物深層組織成像上有著長遠(yuǎn)的應(yīng)用前景。美國多光子顯微鏡實驗