出租房里的交互高康张睿篇,亚洲中文字幕一区精品自拍,里番本子库绅士ACG全彩无码,偷天宝鉴在线观看国语版

多光子顯微鏡基本參數(shù)
  • 品牌
  • Bruker,布魯克
  • 型號
  • 型號齊全
  • 類型
  • 立體顯微鏡
多光子顯微鏡企業(yè)商機

現(xiàn)代分子生物學技術的迅速發(fā)展和科技的進步,特別是隨著后基因組時代的到來,人們已經能夠根據(jù)需要建立各種細胞模型,為在體研究基因表達規(guī)律、分子間的相互作用、細胞的增殖、細胞信號轉導、誘導分化、細胞凋亡以及新的血管生成等提供了良好的生物學條件。然而,盡管人們利用現(xiàn)有的分子生物學方法,已經對基因表達和蛋白質之間的相互作用進行了深入、細致的研究,但仍然不能實現(xiàn)對蛋白質和基因活動的實時、動態(tài)監(jiān)測。在細胞的生理過程中,基因、尤其是蛋白質的表達、修飾和相萬作用往往發(fā)生可逆的、動態(tài)的變化。目前的分子生物學方法還不能捕獲到蛋白質和基因的這些變化,但獲取這些信息對與研究基因的表達和蛋白質之間的相互作用又至關重要。因此,發(fā)展能用于、動態(tài)、實時、連續(xù)監(jiān)測蛋白質和基因活動的方法是非常有必要的。精確觀測生物分子相互作用,多光子顯微鏡推動生命科學研究發(fā)展。熒光多光子顯微鏡Ultima 2P Plus

熒光多光子顯微鏡Ultima 2P Plus,多光子顯微鏡

對于雙光子成像而言,離焦和近表面熒光激發(fā)是兩個比較大的深度限制因素,而對于三光子(3P)成像這兩個問題大大減小,但是三光子成像由于熒光團的吸收截面比2P要小得多,所以需要更高數(shù)量級的脈沖能量才能獲得與2P激發(fā)的相同強度的熒光信號。功能性3P顯微鏡比結構性3P顯微鏡的要求更高,它需要更快速的掃描,以便及時采樣神經元活動;需要更高的脈沖能量,以便在每個像素停留時間內收集足夠的信號。復雜的行為通常涉及到大型的大腦神經網(wǎng)絡,該網(wǎng)絡既具有局部的連接又具有遠程的連接。要想將神經元活動與行為聯(lián)系起來,需要同時監(jiān)控非常龐大且分布普遍的神經元的活動,大腦中的神經網(wǎng)絡會在幾十毫秒內處理傳入的刺激,要想了解這種快速的神經元動力學,就需要MPM具備對神經元進行快速成像的能力??焖費PM方法可分為單束掃描技術和多束掃描技術。在體多光子顯微鏡焦點激發(fā)多光子顯微鏡,實現(xiàn)無創(chuàng)、無標記的生物組織觀測方案。

熒光多光子顯微鏡Ultima 2P Plus,多光子顯微鏡

2020年,JianglaiWu等人提出提高2PM橫向掃描速率的裝置,稱為FACED(free-spaceangular-chirp-enhanceddelay)。圓柱透鏡將激光束一維聚焦,會聚角為Δθ。光束進入到一對幾乎平行的高反射鏡中,其間距為S,偏角為α。經過反射鏡多次反射后,激光脈沖被分成多個傳播方向不同的子脈沖(N=Δθ/α),脈沖間以2S/c的時間延遲(c,光速)回射。FACED模塊輸出處的子脈沖序列可以看作從虛擬光源陣列發(fā)出的光,這些子脈沖在中繼到顯微鏡物鏡后形成了一個空間上分離且時間延遲的焦點陣列。然后將該模塊并入具有高速數(shù)據(jù)采集系統(tǒng)的標準雙光子熒光顯微鏡中。光源是具有1MHz重復頻率的920nm的激光器,通過FACED模塊可產生80個脈沖焦點,其脈沖時間間隔為2ns。這些焦點是虛擬源的圖像,虛擬源越遠,物鏡處的光束尺寸越大,焦點越小。光束沿y軸比x軸能更好地充滿物鏡,從而導致x軸的橫向分辨率為0.82μm,y軸的橫向分辨率為0.35μm。

我們要指出的是,單光子激發(fā)熒光和雙光子激發(fā)熒光,是從熒光產生的機理上來區(qū)分的。而共焦則是熒光顯微鏡的一種結構,其目的是為了,通過共焦結構,提高整個熒光顯微鏡的空間分辨率。所以共焦熒光顯微鏡可以根據(jù)激發(fā)光源的不同,實現(xiàn)單光子共焦熒光成像或者雙光子共焦熒光成像。往往一個普通的雙光子熒光顯微鏡(沒有共焦結構)其空間分辨率也可以達到單光子共焦熒光顯微鏡的水平。這樣就可以簡化整個系統(tǒng),相對來說,就提高了激發(fā)光源的利用率,以及熒光的探測效率,這個也是我們提倡雙光子熒光成像的原因之一。雙光子熒光共焦顯微鏡由于雙光子效應和共焦結構,分辨率則會更高,而我們通常說的共焦顯微鏡都是指單光子激發(fā)熒光的。利用多光子顯微鏡的多點光ji活能力,我們可以研究多個神經細胞之間的連接和控制。

熒光多光子顯微鏡Ultima 2P Plus,多光子顯微鏡

2020年,TonmoyChakraborty等人提出了加速2PM軸向掃描速度的方法[2]。在光學顯微鏡中,物鏡或樣品緩慢的軸向掃描速度限制了體成像的速度。近年來,通過使用遠程聚焦技術或電調諧透鏡(ETL)已經實現(xiàn)了快速軸向掃描。但遠程對焦時對反射鏡的機械驅動會限制軸向掃描速度,ETL會引入球差和高階像差,無法進行高分辨率成像。為了克服這些限制,該小組引入了一種新的光學設計,可以將橫向掃描轉換為無球面像差的軸向掃描,以實現(xiàn)高分辨率成像。有兩種方法可以實現(xiàn)這種設計。***個可以執(zhí)行離散的軸向掃描,另一個可以執(zhí)行連續(xù)的軸向掃描。如圖3a所示,特定裝置由兩個垂直臂組成,每個臂具有4F望遠鏡和物鏡。遠程聚焦臂由振鏡掃描鏡(GSM)和空氣物鏡(OBJ1)組成,另一個臂(稱為照明臂)由浸沒物鏡(OBJ2)組成。兩個臂對齊,使得GSM與兩個物鏡的后焦平面共軛。準直后的激光束經偏振分束器反射進入遠程聚焦臂,由GSM進行掃描,使OBJ1產生的激光焦點可以進行水平掃描。多光子顯微鏡,為疾病診斷和藥物研發(fā)提供強大支持。模塊化多光子顯微鏡代理

雙光子顯微鏡可以在保持細胞活性的情況下進行成像,這對于研究細胞生理學和生物化學過程非常有用。熒光多光子顯微鏡Ultima 2P Plus

細胞在受到外界刺激時,隨著刺激時間的增長,即使刺激繼續(xù)存在,Ca2+熒光信號不但不會繼續(xù)增強,反而會減弱,直至恢復到未加刺激物時的水平。對于細胞受精過程中Ca2+熒光信號的變化情況,研究發(fā)現(xiàn),配了在粘著過程中,Ca2+熒光信號未發(fā)生任何變化,而配子之間發(fā)生融合作用時,Ca2+熒光信號強度卻會出現(xiàn)一個不穩(wěn)定的峰值,并可持續(xù)幾分鐘。這些現(xiàn)象,對研究受精發(fā)育的早期信號及Ca2+在卵細胞和受精卵的發(fā)育過程中的作用具有重要的意義。在其它一些生理過程如細胞分裂、胞吐作用等等,Ca2+熒光信號強度也會發(fā)生很強的變化。熒光多光子顯微鏡Ultima 2P Plus

與多光子顯微鏡相關的**
信息來源于互聯(lián)網(wǎng) 本站不為信息真實性負責