2020年,JianglaiWu等人提出提高2PM橫向掃描速率的裝置,稱為FACED(free-spaceangular-chirp-enhanceddelay)。圓柱透鏡將激光束一維聚焦,會(huì)聚角為Δθ。光束進(jìn)入到一對(duì)幾乎平行的高反射鏡中,其間距為S,偏角為α。經(jīng)過(guò)反射鏡多次反射后,激光脈沖被分成多個(gè)傳播方向不同的子脈沖(N=Δθ/α),脈沖間以2S/c的時(shí)間延遲(c,光速)回射。FACED模塊輸出處的子脈沖序列可以看作從虛擬光源陣列發(fā)出的光,這些子脈沖在中繼到顯微鏡物鏡后形成了一個(gè)空間上分離且時(shí)間延遲的焦點(diǎn)陣列。然后將該模塊并入具有高速數(shù)據(jù)采集系統(tǒng)的標(biāo)準(zhǔn)雙光子熒光顯微鏡中。光源是具有1MHz重復(fù)頻率的920nm的激光器,通過(guò)FACED模塊可產(chǎn)生80個(gè)脈沖焦點(diǎn),其脈沖時(shí)間間隔為2ns。這些焦點(diǎn)是虛擬源的圖像,虛擬源越遠(yuǎn),物鏡處的光束尺寸越大,焦點(diǎn)越小。光束沿y軸比x軸能更好地充滿物鏡,從而導(dǎo)致x軸的橫向分辨率為0.82μm,y軸的橫向分辨率為0.35μm。證實(shí)了多光子顯微鏡對(duì)皮膚和別的皮膚病的診斷的可行性。全自動(dòng)多光子顯微鏡
快速光柵掃描有多種實(shí)現(xiàn)方式,使用振鏡進(jìn)行快速2D掃描,將振鏡和可調(diào)電動(dòng)透鏡結(jié)合在一起進(jìn)行快速3D掃描,但可調(diào)電動(dòng)透鏡由于機(jī)械慣性的限制在軸向無(wú)法快速進(jìn)行焦點(diǎn)切換,影響成像速度,現(xiàn)可使用空間光調(diào)制器(SLM)代替。遠(yuǎn)程聚焦也是一種實(shí)現(xiàn)3D成像的手段,如圖2所示。在LSU模塊中,掃描振鏡進(jìn)行橫向掃描,ASU模塊包括物鏡L1和反射鏡M,通過(guò)調(diào)控M的位置實(shí)現(xiàn)軸向掃描。該技術(shù)不僅可以校正主物鏡L2引入的光學(xué)像差,還可以進(jìn)行快速的軸向掃描。想要獲得更多神經(jīng)元成像,可以通過(guò)調(diào)整顯微鏡的物鏡設(shè)計(jì)來(lái)擴(kuò)大FOV,但是具有大NA和大FOV的物鏡通常重量較大,無(wú)法快速移動(dòng)以進(jìn)行快速軸向掃描,因此大型FOV系統(tǒng)需要依賴于遠(yuǎn)程聚焦、SLM和可調(diào)電動(dòng)透鏡。共聚焦多光子顯微鏡能量脈沖多光子顯微鏡技術(shù)的優(yōu)勢(shì)如何?又有哪些應(yīng)用?
作為一個(gè)多學(xué)科、知識(shí)密集型和資金密集型的高科技產(chǎn)業(yè),多光子顯微鏡涉及醫(yī)學(xué)、生物學(xué)、化學(xué)、物理學(xué)、電子學(xué)、工程學(xué)等多個(gè)學(xué)科。其生產(chǎn)工藝相對(duì)復(fù)雜,進(jìn)入門檻較高。它是衡量一個(gè)國(guó)家制造業(yè)和高科技發(fā)展水平的重要標(biāo)準(zhǔn)之一。在過(guò)去的五年里,多光子顯微鏡的市場(chǎng)是集中的。由于投產(chǎn)成本高,技術(shù)難度大,目前涌現(xiàn)的新企業(yè)并不多。顯微鏡作為傳統(tǒng)的高科技產(chǎn)業(yè),并沒(méi)有被其他技術(shù)顛覆,而是一直在不斷融合發(fā)展相關(guān)技術(shù),在醫(yī)療等精密檢測(cè)領(lǐng)域發(fā)揮更大的作用。顯微鏡的商業(yè)化發(fā)展已進(jìn)入成熟階段,主要需求來(lái)自教學(xué)、生命科學(xué)研究和精密測(cè)試等。全球市場(chǎng)呈現(xiàn)溫和增長(zhǎng)趨勢(shì)。而顯微鏡產(chǎn)品(如多光子顯微鏡、電子顯微鏡)正在刺激市場(chǎng)需求,多光子顯微鏡市場(chǎng)發(fā)展?jié)摿薮蟆?/p>
Ca2+是重要的第二信使,對(duì)于調(diào)節(jié)細(xì)胞的生理反應(yīng)具有重要的作用,開(kāi)發(fā)和利用雙光子熒光顯微成像技術(shù)對(duì)Ca2+熒光信號(hào)進(jìn)行觀測(cè),可以從某些方面對(duì)有機(jī)體或細(xì)胞的變化機(jī)制進(jìn)行分析,具有重要的意義。利用雙光子熒光顯微成像技術(shù)可以觀察細(xì)胞內(nèi)用熒光探針標(biāo)記的Ca2*的時(shí)間和空間的熒光圖像的變化,還可以觀察細(xì)胞某一層面或局部的(Ca2+)熒光圖像和變化。通過(guò)對(duì)單細(xì)胞的研究發(fā)現(xiàn),Ca2+不僅在細(xì)胞局部區(qū)域間的分布是不均勻的,而且細(xì)胞內(nèi)各局部區(qū)域的不同深度或?qū)哟伍g也存在不同程度的Ca2+梯差即所謂的空間Ca2梯差。從產(chǎn)品類型及技術(shù)方面來(lái)看,正置顯微鏡占據(jù)絕大多數(shù)市場(chǎng)。
對(duì)于雙光子成像而言,離焦和近表面熒光激發(fā)是兩個(gè)比較大的深度限制因素,而對(duì)于三光子成像這兩個(gè)問(wèn)題大大減小,但是三光子成像由于熒光團(tuán)的吸收截面比2P要小得多,所以需要更高數(shù)量級(jí)的脈沖能量才能獲得與2P激發(fā)的相同強(qiáng)度的熒光信號(hào)。功能性3P顯微鏡比結(jié)構(gòu)性3P顯微鏡的要求更高,它需要更快速的掃描,以便及時(shí)采樣神經(jīng)元活動(dòng);需要更高的脈沖能量,以便在每個(gè)像素停留時(shí)間內(nèi)收集足夠的信號(hào)。復(fù)雜的行為通常涉及到大型的大腦神經(jīng)網(wǎng)絡(luò),該網(wǎng)絡(luò)既具有局部的連接又具有遠(yuǎn)程的連接。要想將神經(jīng)元活動(dòng)與行為聯(lián)系起來(lái),需要同時(shí)監(jiān)控非常龐大且分布普遍的神經(jīng)元的活動(dòng),大腦中的神經(jīng)網(wǎng)絡(luò)會(huì)在幾十毫秒內(nèi)處理傳入的刺激,要想了解這種快速的神經(jīng)元?jiǎng)恿W(xué),就需要MPM具備對(duì)神經(jīng)元進(jìn)行快速成像的能力。快速M(fèi)PM方法可分為單束掃描技術(shù)和多束掃描技術(shù)。多光子激光掃描顯微鏡更能解決生物組織中深層物質(zhì)的層析成像問(wèn)題, 擴(kuò)大了應(yīng)用范圍。共聚焦多光子顯微鏡能量脈沖
國(guó)內(nèi)市場(chǎng)多光子顯微鏡銷售渠道。全自動(dòng)多光子顯微鏡
多光子顯微鏡通過(guò)引入具有超高透射率、非常陡峭的邊緣和精心優(yōu)化的阻擋的濾光片,為多光子用戶帶來(lái)了增強(qiáng)的性能??紤]到激發(fā)激光器和多光子成像系統(tǒng)的其他復(fù)雜元件通常需要多少投資,這些新的光學(xué)濾光片**了一種簡(jiǎn)單且廉價(jià)的升級(jí),可以顯著提高系統(tǒng)性能。事實(shí)上,與傳統(tǒng)濾光片的褐**調(diào)相比,發(fā)射濾光片看起來(lái)像窗戶玻璃一樣清晰,而且LWP二向色鏡具有如此寬的反射帶,它們看起來(lái)像高反射鏡。發(fā)射濾光片還在Ti:Sapphire激光調(diào)諧范圍內(nèi)提供深度阻擋,這對(duì)于實(shí)現(xiàn)高信噪比和測(cè)量靈敏度至關(guān)重要。全自動(dòng)多光子顯微鏡