多光子成像系統(tǒng)提供的優(yōu)勢包括了真正的三維成像、對活組織內(nèi)部深處進行成像的能力以及消除平面外熒光的能力。使用這種方法進行成像,可以對斯托克斯位移非常短和/或效率非常低的熒光染料進行成像,甚至可以對樣品或組織中固有的熒光分子進行成像。多光子成像的缺點包括需要高峰值功率脈沖激光器,例如鎖模鈦:藍寶石激光器,并且直到現(xiàn)在,缺乏在整個發(fā)射范圍內(nèi)提供足夠吞吐量的高性能濾光片。整個激光調(diào)諧范圍內(nèi)的興趣和足夠的阻擋。4tune光譜檢測器,實現(xiàn)多光子顯微鏡的光譜型檢測。美國熒光多光子顯微鏡焦點激發(fā)
某種物質(zhì)能產(chǎn)生熒光,首要條件是分子必須具有吸收的結(jié)構(gòu),即生色團(分子中具有吸收特征頻率的光能的基團)。其次,該物質(zhì)必須具有一定的量子產(chǎn)率和適宣的環(huán)境。我們把分子中發(fā)射熒光的基團稱為熒光團。熒光團一定是生色團,但生色團不一定是熒光團。因為,如果生色團的量子產(chǎn)率等于零,就不能發(fā)射出熒光,處于激發(fā)態(tài)的分子,可以由許多方式(如熱,碰撞)把能量釋放出來,發(fā)射熒光只是其中的一種方式。此外,一種物質(zhì)吸收光的能力及量子產(chǎn)率又與物質(zhì)所處的環(huán)境密切相關(guān)。美國離體多光子顯微鏡方案全球多光子顯微鏡主要消費地區(qū)分析,包括消費量及份額等。
對兩個遠距離(相距大于1-2mm)的成像部位,通常使用兩條單獨的路徑進行成像;對于相鄰區(qū)域,通常使用單個物鏡的多光束進行成像。多光束掃描技術(shù)必須特別注意激發(fā)光束之間的串?dāng)_問題,這個問題可以通過事后光源分離方法或時空復(fù)用方法來解決。事后光源分離方法指的是用算法來分離光束消除串?dāng)_;時空復(fù)用方法指的是同時使用多個激發(fā)光束,每個光束的脈沖在時間上延遲,這樣就可以暫時分離被不同光束激發(fā)的單個熒光信號。引入越多路光束就可以對越多的神經(jīng)元進行成像,但是多路光束會導(dǎo)致熒光衰減時間的重疊增加,從而限制了區(qū)分信號源的能力;并且多路復(fù)用對電子設(shè)備的工作速率有很高的要求;大量的光束也需要更高的激光功率來維持近似單光束的信噪比,這會容易導(dǎo)致組織損傷。
從產(chǎn)品類型及技術(shù)方面來看,正置顯微鏡占據(jù)絕大多數(shù)市場。2020年,全球多光子激光掃描正置顯微鏡市場達到87.30百萬美元,預(yù)計到2027年該部分市場將達到154.02百萬美元,年復(fù)合增長率(2021-2027)為8.48%。中國多光子激光掃描正置顯微鏡市場達到13.32百萬美元,預(yù)計到2027年該部分市場將達到25.21百萬美元,年復(fù)合增長率(2021-2027)為9.58%。從產(chǎn)品市場應(yīng)用情況來看,研究機構(gòu)為主要應(yīng)用領(lǐng)域,2020年約占全球市場46.28%。2020年,全球多光子激光掃描顯微鏡研究機構(gòu)應(yīng)用消費量為174臺,預(yù)計2027年達到349臺,2021-2027年復(fù)合增長率(CAGR)為9.72%。多光子顯微鏡的分辨率比傳統(tǒng)的單光子共聚焦要低的多。
單光子激發(fā)熒光的過程,就是熒光分子吸收一個光子,從基態(tài)躍遷到激發(fā)態(tài),躍遷以后,能量較大的激發(fā)態(tài)分子,通過內(nèi)轉(zhuǎn)換把部分能量轉(zhuǎn)移給周圍的分子,自己回到比較低電子激發(fā)態(tài)的比較低振動能級。處于比較低電子激發(fā)態(tài)的比較低振動能級的分子的平均壽命大約在10s左右。這時它不是通過內(nèi)轉(zhuǎn)換的方式來消耗能量,回到基態(tài),而是通過發(fā)射出相應(yīng)的光量子來釋放能量,回到基態(tài)的各個不同的振動能級時,就發(fā)射熒光。因為在發(fā)射熒光以前已經(jīng)有一部分能量被消耗,所以發(fā)射的熒光的能量要比吸收的能量小,也就是熒光的特征波長要比吸收的特征波長來的長。中國市場多光子顯微鏡產(chǎn)量、消費量、進出口分析及未來趨勢。美國熒光多光子顯微鏡焦點激發(fā)
多光子顯微鏡的大多數(shù)補償器都采用棱鏡。美國熒光多光子顯微鏡焦點激發(fā)
與傳統(tǒng)的單光子寬視野熒光顯微鏡相比,多光子顯微鏡具有光學(xué)切片和深層成像等功能,這兩個優(yōu)勢極大地促進了研究者們對于完整大腦深處神經(jīng)的了解與認識。2019年,JeromeLecoq等人從大腦深處的神經(jīng)元成像、大量神經(jīng)元成像、高速神經(jīng)元成像這三個方面論述了相關(guān)的MPM技術(shù)。想要將神經(jīng)元活動與復(fù)雜行為聯(lián)系起來,通常需要對大腦皮質(zhì)深層的神經(jīng)元進行成像,這就要求MPM具有深層成像的能力。激發(fā)和發(fā)射光會被生物組織高度散射和吸收是限制MPM成像深度的主要因素,雖然可以通過增加激光強度來解決散射問題,但這會帶來其他問題,例如燒壞樣品、離焦和近表面熒光激發(fā)。增加MPM成像深度比較好的方法是用更長的波長作為激發(fā)光。美國熒光多光子顯微鏡焦點激發(fā)